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Abstract

By weakening Shannon’s original axioms to allow for attributes of the choice environment to

differ in their associated learning costs, this paper provides an axiomatic foundation for Multi-

Attribute Shannon Entropy, a natural multi-parameter generalization of Shannon Entropy. Suf-

ficient conditions are also provided for a simple dataset that identifies the Multi-Attribute Shan-

non Entropy cost function for information by analysing stochastic choice data produced by a

rationally inattentive agent that is picking between pairs of options when relatively few states

of the world have a positive probability of being realized.

1 Introduction

It is costly for an economic agent to learn about the options that they face because it takes

time and effort to acquire and process information. The cost of information may result in agents not

acquiring all of the relevant information before making a decision, which creates important caveats

for standard economic analysis techniques. Both welfare and counterfactual analysis, for instance,

are more difficult if an agent does not always pick the best available option due to incomplete

information.

The standard tool for measuring the cost of information in the rational inattention (RI)

literature, Shannon Entropy (Shannon, 1948; Sims, 2003; Maćkowiak, Matějka, & Wiederholt,

*Special thanks to Rahul Deb for all of the support. I would also like to thank Andrew Caplin, Mark Dean,
Yoram Halevy, Carolyn Pitchik, and Colin Stewart, for their advice, and the government of Ontario for funding.
Earlier versions of parts of this paper were previously circulated under the title “Rational Inattention and Perceptual
Distance.”
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2023), has limitations in economic environments because it is a one-parameter model for the cost

of learning the state of the world. In economic choice settings, however, it is natural to think that

some attributes of the choice environment may be easier for the agent to learn about than others. If

Shannon Entropy, whose one parameter imposes that all attributes are the same difficulty to learn

about, is used to model agent behavior in such settings then predicted behavior does not resemble

the behavior that has been observed in experiments (Dean & Neligh, 2022).

It is not difficult to come up with examples where Shannon Entropy’s single parameter

imposes unrealistic structure. Pomatto, Strack, and Tamuz (2023) have a particularly good example

in which a researcher is gathering information about the GDP per capita of a country. If the

researcher has a uniform prior belief about which of an interval of integers is the realized GDP per

capita, then Shannon Entropy imposes that the expected cost to the researcher of determining if

the GDP per capita is an even or odd number is the same as the expected cost of determining if the

GDP per capita is above or below the median integer from the interval of outcomes they believed

to be possible. This, of course, does not make sense because the “attribute” of GDP per capita of

being even or odd should be more costly to learn about.

These types of problems arise with Shannon Entropy because Shannon’s original work, which

features an axiomatic foundation for Shannon Entropy, assumes that the agent can learn the state

of the world by answering a series of questions,1 and, crucially, that the cost to the agent of learning

the state of the world does not depend on the order in which the questions are answered. This

is problematic, however, since if some attributes are easier for the agent to learn about and are

more helpful for identifying the state of the world then the agent might be able to reduce their

expected cost of learning the state of the world by first trying to determine the realizations of these

“cheaper” to learn about attributes.

This paper proposes four axioms that are similar to Shannon’s original axioms (Shannon,

1948) in that they focus on the cost of answering simple questions that can be represented by

partitions of the state space. Taken together, the four axioms in this paper are weaker than

Shannon’s axioms because they relax Shannon’s assumption that the set of simple questions that

is used, and the order in which they are answered, cannot change the expected cost of learning

the state of the world. By allowing for the set of questions that is used to learn the state of

the world, and the order in which they are answered, to change the agent’s expected learning

1Shannon does not refer to questions, but what he studies is the analogue of the partitions of the state space in
this paper that are eventually defined as questions.
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cost, this paper’s axioms provide a foundation for Multi-Attribute Shannon Entropy (MASE), a

multi-parameter generalization of Shannon Entropy.

MASE, which can be understood as a measure of the agent’s uncertainty, can be used to

study a rationally inattentive agent that optimally learns in a flexible fashion because the cost of

any imprecise learning that the agent does can be measured as the expected reduction in uncertainty

that the learning causes, as is typically done with Shannon Entropy in models of RI. Thus, while this

paper proposes axioms that, like Shannon’s original axioms (Shannon, 1948), discuss an attentive

agent that perfectly observes the state of the world, the model that the axioms produce can be used

to study an inattentive agent that can choose to learn in a quite flexible manner and, in general,

only partially learns about the state of the world.

MASE maintains much of the coveted tractability of Shannon’s classic measure when incor-

porated into such a model of RI because Walker-Jones (2023) provides the MASE analogues of the

famous necessary conditions provided by Matějka and McKay (2015) and necessary and sufficient

conditions provided by Caplin, Dean, and Leahy (2018) for optimal agent behavior in RI models

that use Shannon Entropy. MASE is thus a natural and tractable multi-parameter generalization

of Shannon Entropy.

This paper also provides conditions that describe when a dataset is sufficient for the unique

identification of the MASE cost function for information. Such a dataset features observed behavior

from simple choice problems, choice problems where two options are available and only a few states

of the world occur with a positive probability, and identifies both a set of attributes and their

associated learning costs that fully determines the cost of differentiating between outcomes when

any set of the potential states of the world occur with a positive probability.

1.1 Organization of Paper

The remainder of the paper is organized as follows: Section 2 provides an axiomatic foun-

dation for MASE that weakens Shannon’s original axioms (Shannon, 1948). Section 3 introduces

a model of rational inattention that uses MASE to measure the cost of information and provides

conditions for a dataset generated by a rationally inattentive agent that are sufficient for the unique

identification of the agent’s MASE cost function for information. Section 4 provides a literature

review, and Section 5 concludes.
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2 Axioms and MASE

Suppose that the uncertainty faced by the agent is described by a measurable space (Ω, F),

where Ω is a finite set of possible states of the world (the state space), and F is the set of

events generated by Ω (the power set of Ω). The probability measure µ : F → [0, 1], which assigns

probabilities to events, is referred to as the prior belief of the agent. To ease exposition, for the

rest of the paper it is assumed that µ(ω) > 0 for all ω ∈ Ω unless stated otherwise.

2.1 Learning Strategies

One natural way to model an agent learning about the state of the world is through a series

of questions that have answers that are determined by the state of the world.2 I use partitions to

model such question because a question with multiple potential answers is equivalent to a partition

of the state space whenever the answer to the question is determined by the state of the world.

This equivalence occurs since I can simply group states of the world based on the answer to the

question they produce. The words ‘question’ and ‘partition’ are thus used interchangeably in this

paper.

Formally, a partition P of a state space Ω is a set of more than one disjoint events in F

whose union is Ω.3 For each event A ∈ F , define the complement of the event, denoted Ac, to be

the set of states that are not in A, so Ac = Ω\A, and thus {A, Ac} forms a partition. If ω ∈ Ω is

the state of the world, let the realized event of the partition P = {A1, . . . , Am} be denoted by

P(ω), that is P(ω) = Ai ∈ {A1, . . . , Am} iff ω ∈ Ai.

The simplest kind of question in this setting is a yes or no question. A yes or no question is

equivalent to a binary partition Pb of Ω, which I define as a set of two events, Pb = {A1, A2},

such that A1∪A2 = Ω, and A1∩A2 = ∅. The two phrases ‘binary partition’ and ‘yes or no question’

are thus used interchangeably in this paper.

Given a prior µ, and some partition P, let C(P, µ) ∈ R+ denote the (expected) cost of

learning the realized event P(ω) of P, that is, the agent’s expected cost of changing their belief

from µ to µ(·|P(ω)).4 C(P, µ), the cost of answering ‘What is the realized event of P?’ given the

agent’s prior belief, is the basic building block of this paper.

A learning strategy, S = (P1, . . . , Pn), is a list of partitions whose realized events are

2A question’s answer is said to be determined by the state of the world if knowing the state indicates the answer
to the question with certainty.

3Notice that the definition of a partition excludes trivial partitions that only contain a single event.
4Where µ(·|P(ω)) is the distribution over states given the realization of partition P(ω) and Bayes’ rule.
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successively observed by the agent such that if Pi, Pj ∈ S, and i ̸= j, then Pi ̸= Pj . A ‘learning

strategy’ is thus ‘a series of questions’ and the two phrases are used interchangeably in this paper.

When the agent selects a learning strategy of this form it may seem that the agent is being restricted

to selecting ‘history-independent’ learning strategies in the sense that it seems like they cannot select

the second partition based on the realization of the first partition, but this is not really the case.

When the agent selects the second partition for their learning strategy they are essentially choosing

a (perhaps trivial) partition of each of the potential realized events of the first partition, and thus

their learning strategy is effectively ‘history-dependent;’ they are effectively choosing what to learn

next based on what they have already learned.

If a learning strategy consists of only binary partitions, I call it a binary learning strategy,

and denote it Sb = (Pb
1, . . . , Pb

n). The order of the questions in a learning strategy is important,

and changing the order results in a different learning strategy. If, for instance, some questions are

more costly for the agent to answer, and help to identify states that are seldom observed, then it

may seem efficient for a learning strategy to leave these questions towards the end.5

I define C(S, µ), which is the (expected) cost of a learning strategy S = (P1, . . . , Pn) given

a probability measure µ, to be the sum of the costs of each of the questions in S:

C(S, µ) ≡ C(P1, µ) + E
[
C
(
P2, µ(·|P1(ω))

)
+ · · ·+ C

(
Pn, µ(·|∩n−1

i=1 Pi(ω))
)]

.

The definition of C(S, µ) thus imposes a form of constant marginal cost onto learning strategies

because over the course of their learning strategy the agent does not fatigue, nor do they gain

experience with research and become better at learning: all that matters for determining the cost

of each question are the beliefs of the agent immediately before the question is answered, and not

how much has previously been learned.

If B is a collection of partitions, let σ(B) denote the σ-algebra generated by B, which

is the smallest σ-algebra containing all the events in each of the partitions in B. Since a learning

strategy S is a collection of partitions, I use σ(S) to denote the σ-algebra generated by S.

Sometimes a single question can be as informative as several questions. I say a learning

strategy S is equivalent to a partition P if σ(S) = σ(P). What σ(S) = σ(P) means intuitively is

that, for any prior probability measure µ : F → R+, observing the answers to the series of questions

in S always leads to the same posterior as observing the answer to the question ‘what is the realized

5The order of the events in a partition, in contrast, is not important, and switching the order in which the events
in a partition are listed does not result in a different partition.
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event of the partition P?’, and thus, for all priors, S and P provide the same information.

2.2 Axioms

What form should a cost function for information take? This difficult question does not

have an obvious answer, so this paper provides axioms that help illustrate the structure imposed

by MASE. Each axiom can be separately evaluated in different contexts, either empirically, or

through introspection, to determine how appropriate it is. Further, the axioms help demonstrate

to those that are familiar with Shannon’s original axioms (1948) the differences between MASE

and standard Shannon Entropy.

Axiom 1 (Measurement): Given a binary partition Pb = {A1, A2}, C(Pb, µ) is determined by

µ(A1) and µ(A2): if µ and µ̃ are two probability measures on Ω with µ(A1) = µ̃(A1) (and hence

µ(A2) = µ̃(A2)), then C(Pb, µ) = C(Pb, µ̃), and notationally I can thus replace C(Pb, µ) with

C(Pb, µ(A1), µ(A2)).

In plain language, Axiom 1 says that the expected cost of learning the answer to the yes or

no question represented by Pb should be determined by the probability of the answer being yes

and the probability of the answer being no. If I know the yes or no question being asked, and the

probability of each of its answers, then I know the expected cost of answering the question, I do

not require any additional information.6

I am now going to introduce learning strategy invariance, a concept that is the central pillar

of Shannon’s (1948) axioms and helps to make it explicit what I am assuming with this paper’s

axioms. In general, a particular question P and an equivalent series of questions S may produce

different expected costs depending on what questions are selected to be in S and how they are

ordered. A given question P, however, may have the peculiar property that, given any prior, all

series of questions that are equivalent to it have the same expected cost, in which case I say it is

learning strategy invariant. Formally, I say a partition P is learning strategy invariant, if for

each probability measure µ, the expected cost C(S, µ) is the same for every learning strategy S

that is equivalent to P.

6The axioms focus on learning with yes or no questions for a number of reasons. Eye tracking analysis shows that
when agents are faced with multiple options, they successively compare pairs of the options along a single attribute
dimension (Noguchi & Stewart, 2014, 2018). This suggests that, in practice, agents are breaking their learning into a
number of smaller queries. Further, in the psychology literature these pairwise comparisons are frequently modelled
as ordinal in nature (Noguchi & Stewart, 2018), equivalent to questions with binary outcomes, e.g. ‘Is option a better
than option b in dimension x?’, instead of more complicated questions, e.g. ‘How much better is option a than option
b in dimension x?’, because findings in the field of psychophysics suggest that agents are good at discriminating
stimuli, but are not good at determining the magnitude of the same stimuli (Stewart, Chater, & Brown, 2006).
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In many environments there are partitions that are not learning strategy invariant, however.

In a setting where it seems that the different attributes of the state space should differ in their

associated learning costs, and the agent may be able to lower their expected learning cost by

changing the order in which they learn about them, there are partitions that one should not expect

to be learning strategy invariant. Allowing for some partitions to not be learning strategy invariant

is the key difference between the work in this paper and the work of Shannon (1948), who imposes

that all partitions are learning strategy invariant.

A set of partitions that are certainly learning strategy invariant is the set of binary partitions.

If Pb is a binary partition, then Pb is learning strategy invariant because the only learning strategy

S such that σ(S) = σ(Pb), is S = (Pb). Thus, for any µ, all learning strategies S such that

σ(S) = σ(Pb) have the same expected cost C(S, µ) = C(Pb, µ).

As the next lemma shows, quite a bit of structure is imposed onto C when it is applied to

learning strategy invariant partitions. In particular, structure is imposed onto C when it is applied

to any partition that is coarser than a learning strategy invariant partition, and this structure ends

up being quite useful. I say a partition P of a state space Ω is coarser than a partition P̃ of the

same state space Ω, if each event in P corresponds to a union of events in P̃.

Lemma 1. If a partition P = {A1, . . . , Am} is learning strategy invariant with m ≥ 3, Pb is a

binary partition that is coarser than P, and C satisfies Axiom 1, then for all (p1, p2, p3) such that

p1, p2, p3 ∈ [0, 1) and p1 + p2 + p3 = 1:

C(Pb, p1, 1− p1) + (1− p1)C
(
Pb,

p2
p2 + p3

,
p3

p2 + p3

)

= C(Pb, p2, 1− p2) + (1− p2)C
(
Pb,

p1
p1 + p3

,
p3

p1 + p3

)
= C(Pb, p3, 1− p3) + (1− p3)C

(
Pb,

p1
p1 + p2

,
p2

p1 + p2

)
.

Proofs for all the results in this paper can be found in Appendix 1.

In plainer language, Lemma 1 says that if the cost of learning satisfies Axiom 1 and Pb is

a binary partition that is coarser than a learning strategy invariant partition with at least three

events, then for p1, p2, p3 ∈ [0, 1) and p1 + p2 + p3 = 1, the cost of learning the realized event

of Pb when they occur with probabilities p1 and 1 − p1 plus 1 − p1 times the cost of learning the
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Table 1: Local and Foreign Firms Example

State: ω1 ω2 ω3 ω4

Probability of State: 1/4 1/4 1/4 1/4

Value of option 1 in state: H H L L

Value of option 2 in state: H L H L

realized event of Pb when the events occur with probabilities p2
p2+p3

and p3
p2+p3

, is equal to the cost

of learning the realized event of Pb when the events occur with probabilities p2 and 1 − p2 plus

1− p2 times the cost of learning the realized event of Pb when the events occur with probabilities

p1
p1+p3

and p3
p1+p3

, which is also equal to the cost of learning the realized event of Pb when the events

occur with probabilities p3 and 1− p3 plus 1− p3 times the cost of learning the realized event of Pb

when the events occur with probabilities p1
p1+p2

and p2
p1+p2

. This all means that Axiom 1 imposes

a staggering amount of structure onto the cost of learning the realized event of a binary partition

whenever it is coarser than some other learning strategy invariant partition.

One limitation of Shannon’s (1948) original work, at least when applied in economic settings,

is that he assumes that permuting the order of questions does not change the expected cost of

learning the state of the world. What I instead desire is that that permuting the order of questions

does not change the expected learning cost only if the questions provide ‘similar’ information about

the state of the world. The most succinct and objective way to discuss a partition providing ‘similar’

information to another partition is with a product space, as is explained in the next paragraph.

This is because, if I ignore the distribution over states and the product is taken over replicas of the

same set of states, then a question about the realization of one of the elements of the product is

essentially identical to the same question about the realization of one of the other elements of the

product.

To make this more concrete, consider the choice environment described in Example 2 in the

work of Walker-Jones (2023) where an agent has two options: option 1 and option 2, which can

each be of high value H, or low value L < H, as is described in Table 1, and contrary to what is

possible with Shannon Entropy, learning the value of option 1 is less costly than learning the value

of option 2. For example, perhaps the agent is interested in investing in one of two businesses that

are a priori identical except for the fact that one is local and easier to learn about, while the other is

foreign and harder to learn about. Now, replicate the state space three times so that the new state

space is Ω̃ = Ω1×Ω2×Ω3 with Ω1 = Ω2 = Ω3 = Ω, but do not yet fix any distribution over states. A

natural interpretation of this newly constructed choice environment is that there are three a priori
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identical local firms, three a priori identical foreign firms, and the realization of Ωi determines the

value of investing in both local firm i and foreign firm i for i ∈ {1, 2, 3}. Suppose Pb is a binary

partition of Ω and that Pb
i is the equivalent binary partition of Ωi for each i. For simplicity, one

can assume Pb
i is the question “Does local firm i have high value?”. Thus, Pb

1, Pb
2, and Pb

3, are as

similar as partitions can be by construction as they ask the values of three a priori identical firms.

Now, suppose that the agent knows that the answer to one of the questions, Pb
1, Pb

2, or Pb
3, is ‘yes,’

while the other two have the answer ‘no,’ which means that exactly one of the three local firms has

high value.7 Denote the probability of Pb
i having the answer ‘yes,’ the probability of local firm i

having high value, by pi ∈ [0, 1) for i ∈ {1, 2, 3}.8 Suppose the agent begins by learning about the

realized event of Pb
i . If the agent learns the answer to Pb

i is ‘yes’ they have also learned the answers

to the other two partitions as only one has the answer ‘yes,’ while if they instead learn the answer

to Pb
i is ‘no’ then their belief is updated using Bayes’ Rule so that the probability of the answer

to Pb
j being ‘yes’ for j ∈ {1, 2, 3}\{i} is

pj
pj+pk

, where k ∈ {1, 2, 3}\{i, j}, and after they learn the

answer to Pb
j , no matter the answer, they know the realization of all three partitions as exactly one

has the answer ‘yes.’ What Axiom 2 imposes is that, if C(Pb
i , p, 1− p) = C(Pb, p, 1− p) for each

p ∈ [0, 1] and i ∈ {1, 2, 3} and the answers feature the relationship outlined in this paragraph,

the order in which the agent answers these three ostensibly identical questions is irrelevant to their

expected learning cost: the order that the agent learns about the three firms does not change the

expected cost of learning which of the three local firms is of high value.

Axiom 2 (Self-Similarity): Given a binary partition Pb, and a vector of probabilities (p1, p2, p3)

such that p1, p2, p3 ∈ [0, 1) and p1 + p2 + p3 = 1, C is such that:

C(Pb, p1, 1− p1) + (1− p1)C
(
Pb,

p2
p2 + p3

,
p3

p2 + p3

)

= C(Pb, p2, 1− p2) + (1− p2)C
(
Pb,

p1
p1 + p3

,
p3

p1 + p3

)
= C(Pb, p3, 1− p3) + (1− p3)C

(
Pb,

p1
p1 + p2

,
p2

p1 + p2

)
.

The reader may notice that Axiom 2 implies that C(Pb, p, 1− p) is not constant in p (unless

the cost is always zero) because, revisiting the example from the paragraph before Axiom 2, if the

7If the answer to one question does not contain information about the answers to the other questions, then
assuming that the order in which they are answered does not impact expected costs is a vacuous assumption. The
assumption made here is perhaps the simplest way to ensure the answer to one question provides information about
the answer to the other questions.

8The open upper bound on the pi ensures the agent does not already know the realization of the three partitions.
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cost of learning the value of a firm is constant for p ∈ (0, 1) then the agent could lower learning costs

by learning about firms that have higher probabilities of being of high value first as this reduces the

expected number of firms the agent must learn about. The intuition for why the cost of learning

the value of essentially identical firms may differ is that the agent may posses different pieces of

information about them, and thus what remains to be learnt about each firm may differ. Axiom

2 makes more sense if the belief of the agent is taken to be a parsimonious representation of the

information the agent possesses: beginning by learning the value of a firm that the agent believes

has a very low probability of being high value might not be a bad strategy if the low probability is

indicative of the agent already possessing a lot of information about the firm and as a result it is

in expectation not costly for them to rule out that it is of high value.

Next, I make a quite weak assumption about the continuity of the cost function on binary

partitions. As such, the axioms do not explicitly rule out discontinuities in the cost function, but,

later results show that the cost function is continuous on binary partitions. This is because the

properties described in Axiom 1 and Axiom 2 are only compatible with a cost function that is

either continuous or discontinuous at every point for each binary partition.

Axiom 3 (Weak continuity): Given a binary partition Pb, there is a probability p ∈ [0, 1] such

that C is continuous at (p, 1− p) when applied to Pb.

As was alluded to, a cost function on binary partitions only satisfies Axiom 1 and Axiom 2 if

it is either continuous everywhere or discontinuous everywhere. Thus, if a cost function on binary

partitions satisfies the first three axioms, it is continuous everywhere, as is formalized by Lemma

2, which further shows that the cost function is permutation invariant on binary partitions.

Lemma 2. If C satisfies Axiom 1, Axiom 2, and Axiom 3, then for each binary partition Pb,

C(Pb, p, 1− p) is continuous in p, and C(Pb, p, 1− p) = C(Pb, 1− p, p), for each p ∈ [0, 1].

Continuity and symmetry (invariance with respect to permutations) are not the only helpful

properties imposed onto the cost function by the axioms. On binary partitions, the cost function

is also non-decreasing if the probability of whichever event is less likely increases.

Lemma 3. If C satisfies Axiom 1, Axiom 2, and Axiom 3, then for each binary partition Pb, and

for each p ∈ [0, 1
2), C(Pb, p, 1 − p) is non-decreasing for small increases in p, which means that

there exits θ > 0 such that if γ < θ then C(Pb, p, 1− p) ≤ C(Pb, p+ γ, 1− p− γ).

I now show that the cost of learning the realized event of a learning strategy invariant partition
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is dictated by Shannon Entropy, which needs to be defined. Given a partition of the possible states

of the world P = {A1, . . . , Am}, and a probability measure µ over these events, the uncertainty

about which event has occurred, as measured by Shannon Entropy, is defined:9

H(P, µ) = −
m∑
i=1

µ(Ai) log(µ(Ai)). (1)

The convention used is this paper is to set 0 log(0) = 0.

Lemma 4. If a partition P is learning strategy invariant, and C satisfies Axiom 1, Axiom 2,

and Axiom 3, then there exists a multiplier λ(P) ∈ R+, such that for all probability measures

µ: C(P, µ) = λ(P)H(P, µ), where H is Shannon’s standard measure of entropy (1948) defined in

equation (1).

Underlying each learning strategy invariant partition is some attribute of the choice environ-

ment. Shannon (1948) imposes learning strategy invariance onto all partitions of Ω with his third

axiom, which implies that all partitions have the same costs associated with them (there is a λ > 0

such that λ(P) = λ for all partitions P of Ω), and so it is without loss to think of the agent as

learning about a single attribute that allows them to differentiate between the different states of the

world. With MASE, in contrast, different learning strategy invariant partitions are allowed to have

different costs associated with them (λ(P) may differ depending on the learning strategy invariant

partition P), and thus it is natural to think of the agent as learning about different attributes of

the choice environment depending on which attribute allows them to acquire the information at

the lowest costs, as is formalized by Theorem 1 in the next subsection. This interpretation is how

MASE gets its name.

In addition to his learning strategy invariance axiom, Shannon has two other axioms, one of

which imposes continuity onto his cost function (his axiom 1), and another that deals with the cost

of differentiating between a greater number of equally likely states (his axiom 2) (Shannon, 1948).

As it turns out, there is a great deal of redundancy in Shannon’s axioms, as is demonstrated by

this paper’s axioms.

As a result, Shannon’s third axiom is the only axiom that it is substantive to relax. Shannon’s

second axiom does not have any impact as long as learning with binary partitions is assumed to be

costly when there is uncertainty about their realized event. Removing his first axiom only has an

9This measure is only unique up to a positive multiplier.
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impact if I allow for a cost function that is discontinuous at every point when applied to a binary

partition, which would render it too complex and intractable for practical application. As a result,

if one wishes to generalize Shannon Entropy to achieve a more flexible but still tractable tool with

which to study an environment where learning is costly, it must be Shannon’s third axiom that is

weakened.

I wish to study a costly learning environment so, to ease exposition slightly, Axiom 4 imposes

that answering yes or no questions is costly to the agent.10

Axiom 4 (Costly Learning): Given a binary partition Pb, C(Pb, 1
2 ,

1
2) > 0.

Lemma 4 and Axiom 4 together imply that for each binary partition Pb, there is an associ-

ated multiplier, λ(Pb) ∈ R++, such that for all probability measures µ: C(Pb, µ) = λ(Pb)H(Pb, µ).

2.3 Total Uncertainty

This subsection defines MASE using M ≥ 1 attributes. The number of attributes required for

modelling the learning of the agent, M , is determined by the environment and, in particular, is the

number of different associated multipliers for the binary partition used when the agent efficiently

learns the state of the world using binary partitions, as is described in the following paragraphs.

Since there are a finite number of binary partitions of Ω, I can order the binary partitions

by their associated multipliers. Let λ1 denote the multiplier associated with all binary partitions,

denoted {Pb,λ1
i }n1

i=1, with the lowest multiplier.

If the agent can always learn the state of the world by asking questions with multiplier

λ1, then σ({Pb,λ1
i }n1

i=1) = F , and M=1 (learning the realization of only one attribute is al-

ways sufficient for learning the state of the world).11 If not, let λ2 denote the multiplier asso-

ciated with all binary partitions, denoted {Pb,λ2
i }n2

i=1, with the second lowest multiplier such that

σ({Pb,λ1
i }n1

i=1, {P
b,λ2
i }n2

i=1) ̸= σ({Pb,λ1
i }n1

i=1).

If the agent can always learn the state of the world by asking questions with multipliers

λ1 or λ2, then σ({Pb,λ1
i }n1

i=1, {P
b,λ2
i }n2

i=1) = F , and M = 2. If not, let λ3 denote the multiplier

associated with all binary partitions, denoted {Pb,λ3
i }n3

i=1, with the third lowest multiplier such that

σ({Pb,λ1
i }n1

i=1, {P
b,λ2
i }n2

i=1, {P
b,λ3
i }n3

i=1) ̸= σ({Pb,λ1
i }n1

i=1, {P
b,λ2
i }n2

i=1).

Continue in this fashion until λM denotes the multiplier associated with all binary partitions,

10Allowing for costless learning is not difficult theoretically, but it does make exposition slightly more cumbersome.
It can be shown that if free information is available then it is optimal for the agent to acquire that information, and
then given its realization, choose an optimal learning strategy as described by the results in this paper.

11If M=1, then MASE collapses to standard Shannon Entropy.
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denoted {Pb,λM
i }nM

i=1, with the lowest multiplier such that the state of the world is always revealed

when all questions with equal or lower associated multipliers are asked, that is, the lowest M such

that: σ({Pb,λ1
i }n1

i=1, . . . , {P
b,λM
i }nM

i=1) = F .

To help make the notation more compact, a group of partitions can be used to generate

a finer partition: if (P1, . . . , Pm) is a group of partitions, let ×{Pi}ni=1 denote the partition such

that σ(×{Pi}ni=1) = σ(P1, . . . , Pn). Then, for j ∈ {1, . . . , M},12 let Pλj
= ×{Pb,λj

i }nj

i=1.

The partitions described in the preceding paragraphs are the foundation for the different

attributes of the choice environment used to define MASE in this paper. More specifically, the

attributes Aj ≡ Pλj
for j ∈ {1, . . . , M} are just specific partitions of the state space since the

different outcomes for each attribute divide the state space into events. That is, ∀ω ∈ Ω the

realization of the attribute Aj is defined Aj(ω) ≡ Pλj
(ω) ∈ F .

Finally, since Ω is a partition of itself, one can, as a minor abuse of notation, let Sb(Ω) =

{Sb|σ(Sb) = F} denote the set of binary learning strategies such that σ(Sb) = σ(Ω) = F .

Theorem 1. If C satisfies all four axioms then the attributes (partitions) A1, . . . , AM , with

associated multipliers (constants) 0 < λ1 < . . . < λM , are such that for any probability measure µ

on F :

min
S∈Sb(Ω)

C(S, µ) = λ1H
(
A1, µ

)
+ E

[
λ2H

(
A2, µ(·|A1(ω))

)
+ · · ·+ λMH

(
AM , µ(·|∩M−1

i=1 Ai(ω))
)]

,

where H is Shannon Entropy, defined in equation (1).

In plain language, Theorem 1 says that if the cost of learning satisfies all four axioms, then

the minimal cost (in expectation) to learn the state of the world with a binary learning strategy is

equal to the cost of learning the realization of attribute A1, the cheapest attribute to learn about,

then learning the realization of attribute A2, the second cheapest attribute to learn about, and

continuing in this fashion until the state of the world has been realized. This is optimal precisely

because it minimizes the cost of acquiring the mutual information between the partitions.

In Theorem 1 the agent is minimizing their expected cost of learning the state of the world

by selecting a sequence of binary partitions. This is different from the sequential optimization that

is the focus of the work of Bloedel and Zhong (2021) as they allow agents to select a sequence of

much more general signal structures that do not, in general, result in the agent perfectly observing

the state of the world.
12M is defined in the preceding paragraphs.
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Theorem 1 generates the more flexible measure of uncertainty that I desired for studying

inattentive behavior. If the agent starts with a prior µ, and does optimal learning that reaches a

posterior µ̃, then I let the cost of this inattentive research be measured by the reduction in the

minimal expected cost of learning the state of the world with a binary learning strategy (see Section

3 for more details).

The Pλi
’s that are used to generate the attributes in Theorem 1 are not unique, with the

exception of Pλ1 , and thus the attributes are not unique. The versions described in the paragraphs

preceding Theorem 1 can be used to define the attributes in the statement of the theorem, but, for

i ∈ {2, . . . , M} the partition Pλi
could, for instance, be replaced by P̃λi

= ×{Pλj
}ij=1 for generating

Ai in the statement of Theorem 1, which would constitute the unique finest representation of the

partitions that could be used to define the attributes.

Using the attributes, their associated multipliers, and Theorem 1, I define Multi-Attribute

Shannon Entropy (MASE), H : ∆(Ω) → R+, to be the measure of total uncertainty:

H(µ) ≡ min
S∈Sb(Ω)

C(S, µ)

= λ1H
(
A1, µ

)
+ E

[
λ2H

(
A2, µ(·|A1(ω))

)
+ · · ·+ λMH

(
AM , µ(·|∩M−1

i=1 Ai(ω))
)]

, (2)

where H is Shannon Entropy, which is defined in equation (1). This paper refers to H as a measure

of total uncertainty because, given any probability measure over states, it describes the minimal

expected cost of perfectly observing the state of the world, as is typically done with Shannon

Entropy when it is used in RI models (Matějka & McKay, 2015).

3 Inattentive Learning with MASE and Identification

Suppose that the agent must make a selection from a set of options, denotedN = {1, . . . , N}.

Each option n ∈ N in each state of the world ω ∈ Ω has a (finite) value to the agent vn(ω) ∈ R.

Informally, the agent’s problem is to maximize the expected value of their selected option less the

cost of their learning. The more different their behavior is in different states, i.e. the more their

chances of selecting different options varies across states, the more expensive their information

gathering is because it requires more information to have behavior that is more different from state

to state.

We follow Matějka and McKay (2015) and Walker-Jones (2023) and write the agent’s problem
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directly in terms of the choice probabilities of the agent. Denote the probability of option n being

selected conditional on event A ∈ F to be Pr(n|A) and, as a minor abuse of notation, define the

unconditional probability of option n being selected to be the probability of n being selected

conditional on the event A = Ω: Pr(n) ≡ Pr(n|Ω). Denote the collection of Pr(n|ω) for each n ∈ N

and ω ∈ Ω by P, which is referred to as the agent’s observable behavior.

The agent’s problem is to maximize the expected value of their selected option less the cost

of learning. Define the expected cost of the agent’s behavior to be the expected reduction in total

uncertainty caused by P and the observation of the selected option as measured by H:

C(P, µ) ≡
∑
n∈N

Pr(n)
[
H(µ)−H(µ(·|n))

]

where H(µ) is as defined in equation (2) and µ(·|n) : Ω → R+ is the posterior belief of the agent

after option n is selected given the prior µ, behavior P, and Bayes’ Rule. This definition of the cost

of learning is the same as in the standard Shannon model of RI studied by Matějka and McKay

(2015) except Shannon Entropy is replaced by MASE. The agent’s problem can thus be written:

max
P

∑
n∈N

∑
ω∈Ω

vn(ω)Pr(n|ω)µ(ω)−C(P, µ), (3)

such that: ∀n ∈ N , Pr(n|ω) ≥ 0, ∀ω ∈ Ω, (4)

and
∑
n∈N

Pr(n|ω) = 1 ∀ω ∈ Ω. (5)

The objective described by equation (3) is shown by Walker-Jones (2023) to be concave on

the set of P that satisfy (4) and (5). If behavior P solves (3) subject to (4) and (5) then it is

referred to as optimal. Necessary and sufficient conditions for optimal behavior are provided by

Walker-Jones (2023) and are re-stated in Appendix 1 for the reader’s convenience.

3.1 Identification of the Cost of Learning

What data is required to uniquely identify H : ∆(Ω) → R+? Theorem 2 demonstrates that

if the payoff functions vn : Ω → R for the options n ∈ N satisfy certain properties, then variation

in the belief of the agent and the set of options that they choose from is sufficient for uniquely
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identifying H and, importantly, sufficient for determining if said certain properties are satisfied.

LetM ⊆ N denote a non-empty subset of the options available to the agent, and let P∗(M, µ)

denote an optimal behavior of the agent when their set of options is M and their prior belief is µ,

that is, a set of Pr(m|ω) for each m ∈ M and ω ∈ Ω that solve (3) subject to (4) and (5) when the

prior over states is µ and the agent is further constrained so Pr(n) = 0 if n ∈ N\M. Further, for

each pair of states ωi and ωj in Ω such that ωi ̸= ωj , let λ(ωi, ωj) denote the multiplier associated

with the cheapest attribute that allows for differentiating between the two states, that is, λ(ωi, ωj)

is the unique constant such that if µ(ωi) = µ(ωj) = 1
2 , then H(µ) = λ(ωi, ωj)(− log(12)). Notice

that the attributes A1, . . . , AM , with M ≥ 1, whose realized events together indicate the state of

the world: ∩M
i=1Ai(ω) = ω for all ω ∈ Ω, and their associated multipliers λi > 0 for each attribute

Ai with λM > . . . > λ1 > 0, define H : ∆(Ω) → R, and as a result determine the cost of any

behavior, denoted C(P, µ).

Theorem 2: Assume P∗(M, µ) is known for each M ⊆ N with exactly two options and each

µ ∈ ∆(Ω) that assigns a strictly positive probability to four or less states. If for each pair of states

ωi and ωj in Ω with ωi ̸= ωj there are options n and m in N such that at least one of the following

conditions (i)-(v) are satisfied, then H is uniquely identified. Further, for each such pair of states,

whether or not at least one of the following conditions (i)-(v) are satisfied is observable given the

assumed dataset.

Condition (i): One of the options is better in ωi while the other is better in ωj :

vn(ωi)− vm(ωi) > 0 and vm(ωj)− vn(ωj) > 0.

Condition (ii): One of the options is better in both ωi and ωj , but is better by different amounts

in these two states, and there is a third state ωk where the other option is better:

vn(ωi)− vm(ωi) > 0, vn(ωi)− vm(ωi) ̸= vn(ωj)− vm(ωj) > 0, and vm(ωk)− vn(ωk) > 0.

Condition (iii): One of the options is better in one of the states, assuming without loss that this

state is ωi, neither option is better in the other state ωj , and there is a third state ωk such that

the option that is not better in ωi is better in ωk and the cost of differentiating between ωi and ωj

16



differs from the cost of differentiating between ωj and ωk:

vn(ωi)− vm(ωi) > vn(ωj)− vm(ωj) = 0 < vm(ωk)− vn(ωk) and λ(ωi, ωj) ̸= λ(ωj , ωk).

Condition (iv): One of the options is better in both ωi and ωj by the same amount, and there is

a third state ωk such that the other option is better in ωk and the cost of differentiating between

ωi and ωk differs from the cost of differentiating between ωj and ωk:

vn(ωi)− vm(ωi) = vn(ωj)− vm(ωj) > 0 < vm(ωk)− vn(ωk) and λ(ωi, ωk) ̸= λ(ωj , ωk).

Condition (v): Neither option is better in either ωi or ωj and there are two more states ωk

and ωr such that one of the options is better in ωk while the other is better in ωr, the cost of

differentiating between ωi and ωk differs from the cost of differentiating between ωi and ωr, the

cost of differentiating between ωj and ωk differs from the cost of differentiating between ωj and

ωr, and, in addition, either the cost of differentiating between ωi and ωk differs from the cost of

differentiating between ωj and ωk or the cost of differentiating between ωi and ωr differs from the

cost of differentiating between ωj and ωr:

vn(ωi)− vm(ωi) = 0 = vn(ωj)− vm(ωj), vn(ωk)− vm(ωk) > 0 < vm(ωr)− vn(ωr),

λ(ωi, ωk) ̸= λ(ωi, ωr), λ(ωj , ωk) ̸= λ(ωj , ωr), and λ(ωi, ωk) ̸= λ(ωj , ωk) or λ(ωi, ωr) ̸= λ(ωj , ωr).

The proof of Theorem 2 demonstrates that if for each pair of states one of the conditions

(i)-(v) are satisfied, then there is a finite number of P∗(M, µ) that demonstrate this and uniquely

identify H. Theorem 2 does not say that behavior uniquely identifies the attributes, as there can

be different sets of attributes that produce the same H.

The intuition behind the proof of Theorem 2 is as follows: H can be identified as long as

for each pair of states ωi and ωj the multiplier associated with the cheapest attribute that allows

for differentiating between them can be identified. Such multipliers can be identified as long as

optimal behavior is observed in a choice environment with limited options and possible states and

the agent has choice probabilities for the options that optimally differ across the two states in

said choice environment. If one option is better in one state while another option is better in the

other state, then identifying the multiplier associated with the cheapest attribute that allows for
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differentiating between the pair of states is simple as it can be shown that there is a distribution

over these two states that results in the agent optimally selecting choice probabilities that differ in

the two states when the two options are the only ones available, and this difference across states

identifies the desired multiplier given the work of Walker-Jones (2023). If two states feature the

same ranking of the values of all options, or produce the same value for each option, then the task

is made more difficult, but not impossible if other states exist that can be introduced into the

choice environment that result in the agent optimally selecting differing choice probabilities in the

two states of interest. The proof of Theorem 2 is constructive in the sense that, if a pair of states

satisfies one of the five conditions, the proof of Theorem 2 demonstrates how the data indicates

which of the five conditions is satisfied, how to achieve a closed-form solution for the lowest cost of

differentiating between the two states, and how to use these lowest costs for each pair of states to

construct H.

4 Literature Review

To better understand the relationship between the cost of learning and agent behavior, a

number of papers have studied axiomatic models of rational inattention. Different papers, however,

choose to focus their axioms on different aspects of the choice environment. Caplin, Dean, and

Leahy (2022), for instance, develop axioms that focus on the choice behavior of an agent after

they expend effort to learn about the state of the world. In contrast, de Oliveira (2014) and de

Oliveira, Denti, Mihm, and Ozbek (2017) develop axioms that focus on an agent’s preferences over

choice menus before they expend effort to learn about the state of the world. Broadly, these papers

aim to understand what implications rational agent behavior has for the form of information cost

functions.

Ellis (2018) features axioms that focus on choice behavior and studies the implications for

information cost functions, but further assumes that the agent learns by picking a partition of the

state space. While MASE uses the cost of learning the realized event of partitions as a primitive,

the model studied in this paper does not constrain agents so that they must learn using partitions

of the state space, and it can be shown that in a model of RI with MASE it is never optimal for

the agent to choose an information strategy that is equivalent to a partition of the state space.13

Closer in nature to the work done in this paper, Pomatto et al. (2023) develop axioms that

13This is true whenever the agent does some costly learning.
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focus directly on the costs of information. Axioms that focus on costs for information are interesting

because intuitive properties for costs of information can lead to unintuitive agent behavior that

is compelling given real-world observations (Gigerenzer & Todd, 1999), but is often mistaken for

irrational when axioms that appear rational are imposed on behavior. MASE, for instance, predicts

‘non-compensatory’ behavior, whereby changing an option so that it is more valuable to the agent

can result in a lower chance of it being selected. This type of behavior raises important questions

for welfare and counterfactual analysis, making effective policy design more challenging.

Unlike the work of Pomatto et al. (2023), which features axioms that are concerned with

probabilistic experiments that can result in different outcomes in the same state of the world, this

paper’s cost of information is based on axioms that are concerned with deterministic experiments

(questions) that always result in the same outcome in a given state of the world, and contradicts

the form of constant marginal cost assumed in their paper.

The cost functions defined with MASE are in the class of posterior-separable cost functions,

for which Mensch (2018) provides an axiomatic characterization, and are, in particular, uniformly

posterior separable (Caplin et al., 2022; Denti, 2022) and a strict subset of the neighborhood-based

cost functions described by Hébert and Woodford (2021). Walker-Jones (2023) studies the optimal

behavior of a rationally inattentive agent that pays for information according to a MASE cost

function.

5 Conclusion

This paper introduces four axioms that are similar to Shannon’s original axioms (Shannon,

1948) in that they focus on the cost of answering simple questions that can be represented by

partitions of the state space. Taken together, the four axioms in this paper are weaker than

Shannon’s axioms because they relax Shannon’s “learning strategy invariance” assumption that

imposes that the set of simple questions that is used, and the order in which they are answered,

cannot change the expected cost of learning the state of the world. By allowing for the set of

questions that is used to learn the state of the world, and the order in which they are answered,

to change the agent’s expected learning cost, this paper’s axioms provide a foundation for Multi-

Attribute Shannon Entropy (MASE), a multi-parameter generalization of Shannon Entropy. MASE

allows for attributes of the choice environment to differ in their associated learning costs, and it

is shown that learning about the less costly to observe attributes first, i.e. learning by answering
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questions about the realizations of the attributes in the order of their associated learning costs,

always minimizes the expected cost, no matter the distribution over states.

Several redundancies in Shannon’s original axioms are also identified by the work in this

paper. For instance, if a binary partition is coarser than a learning strategy invariant partition

then the function that maps probabilities of the two answers onto costs must either be continuous

everywhere or discontinuous everywhere, so assuming it is continuous at a single point is sufficient

for developing MASE. It is thus only substantive to relax Shannon’s“learning strategy invariance”

property to allow for the order of questions to change the agent’s expected learning cost.

MASE, which can be understood as a measure of the agent’s uncertainty about the state of the

world, can be used to study a rationally inattentive agent that optimally learns in a flexible fashion

because the cost of any imprecise learning that the agent does can be measured as the expected

reduction in uncertainty that it causes, as is typically done with Shannon Entropy in models of

RI. Thus, while this paper proposes axioms that, like Shannon’s original axioms (Shannon, 1948),

discuss an attentive agent that perfectly observes the state of the world, the model that the axioms

produce can be used to study an inattentive agent that can choose to learn in a quite flexible

manner and, in general, only partially learns about the state of the world.

MASE maintains much of the coveted tractability of Shannon’s classic measure when incor-

porated into such a model of RI because Walker-Jones (2023) provides the MASE analogues of the

famous necessary conditions provided by Matějka and McKay (2015) and necessary and sufficient

conditions provided by Caplin et al. (2018) for optimal agent behavior in RI models that use Shan-

non Entropy. MASE is thus a natural and tractable multi-parameter generalization of Shannon

Entropy.

This paper also provides conditions that describe when a dataset is sufficient for the unique

identification of the MASE cost function for information. Such a dataset features observed behavior

from simple choice problems, choice problems where two options are available and only a few states

of the world occur with a positive probability, and identifies both a set of attributes and their

associated learning costs that fully determines the cost of differentiating between outcomes when

any set of the potential states of the world occur with a positive probability. This identification

is made possible through variation of the prior belief of the agent and the set of options that are

available to them, and builds upon the work of Walker-Jones (2023).
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Hébert, B., & Woodford, M. (2021). Neighborhood-based information costs. American Economic

Review , 111 (10), 3225–55.
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Appendix 1

Before proving Lemma 1, I pause to introduce and prove some other useful results. All of the

proofs for all of the results in this paper are contained in this appendix.

Lemma 5. If a partition P̃ is coarser than a learning strategy invariant partition P, then P̃ is also

learning strategy invariant.

Proof. Suppose P is a learning strategy invariant partition, and P̃ is coarser than P. If P̃ = P I

am done, so assume P̃ ̸= P. The definition of learning strategy invariance then indicates that for

any learning strategy S̃ = (P1, . . . , Pn) such that σ(S̃) = σ(P̃ ), and any µ:

C(P, µ) = C(P̃, µ) + E[C(P, µ(·|P̃(ω)))] = C(S̃, µ) + E[C(P, µ(·|P̃(ω)))].

Thus, C(P̃, µ) = C(S̃, µ) for all such S̃, and any µ, so P̃ is also learning strategy invariant. ■

Lemma 5 makes sense because, if a partition P̃ is coarser than a learning strategy invariant

partition P, the way the realised event of P̃ is learnt cannot impact the expected cost of learning

it as then the cost of learning the realized event of P could differ depending on how the realised

event of P̃ is learnt. Lemma 6 also makes a lot of sense because if the agent assigns a probability

of one to a particular event in a partition then they already know the realized event with certainty

and ‘learning’ the realized event should be costless.

Lemma 6. If P = {A1, . . . , Am} is a learning strategy invariant partition with m ≥ 3, and

probability measure µ assigns a probability of one to an event Ai ∈ P, then C(P, µ) = 0.

Proof. Suppose P = {A1, . . . , Am} is a learning strategy invariant partition with m ≥ 3 and there

is an Ai ∈ P such that µ(Ai) = 1. It is without loss to further assume i = 1. Let P̃ = {A1, A
c
1},

P̂ = {A1∪A2, A3, . . . , Am}, S1 = (P̃, P̂), and S2 = (P̃, P̂, P). The definition of learning strategy

invariance indicates that C(S1, µ) = C(S2, µ), so C(P, µ) = 0 if µ assigns a probability of one to

an event in P. ■

Before introducing the next lemma, I require another definition. If P = {A1, . . . , Am} is a

learning strategy invariant partition, I say that µ̃ is a permutation of µ on P if there is a bijection

π : {1, . . . , m} → {1, . . . , m} such that ∀i ∈ {1, . . . , m}, µ(Ai) = µ̃(Aπ(i)). The result in Lemma

7 is perhaps more surprising, but it speaks to the amount of structure imposed onto the cost of

learning the realised event of a partition by learning strategy invariance, as is further demonstrated

by Lemma 1.

Lemma 7. If a partition P = {A1, . . . , Am} is learning strategy invariant, with m ≥ 3, and C

23



satisfies Axiom 1, then if µ̃ is a permutation of µ on P, then C(P, µ) = C(P, µ̃).

Proof. Suppose P = {A1, . . . , Am} is a learning strategy invariant partition of the state space

Ω with m ≥ 3. Axiom 1 imposes that knowing µ(A1), . . . , and µ(Am) is enough information

to compute the expected learning costs of binary partitions coarser than P, and thus, given P,

C(P, µ) is determined by µ(A1), µ(A2) . . . , and µ(Am).

If I then show that for any i, j ∈ {1, . . . , m} with i ̸= j, and probability measures µ and µ̃

with µ(Ak) = µ̃(Ak) for k /∈ {i, j}, µ(Ai) = µ̃(Aj), and µ(Aj) = µ̃(Ai), that C(P, µ) = C(P, µ̃),

then the desired result holds since a series of pairwise switches like this can be used to create any

permutation desired. Assume that µ and µ̃ satisfy the conditions from the previous sentence. It

is without loss to assume i = 1 and j = 2. Define P̃ = {A1, A2, (A1 ∪ A2)
c} (it is fine if P̃ = P).

Notice that P̃ must be learning strategy invariant based on Lemma 5. Further, if I show that

C(P̃, µ) = C(P̃, µ̃) then C(P, µ) = C(P, µ̃) since, if I define P̂ = {A1 ∪ A2, A3, . . . , Am} that is

also learning strategy invariant based on Lemma 5, then Lemma 6 and the definition of learning

strategy invariance tells us:

C(P, µ) = C(P̃, µ) + (1− µ(A1 ∪A2))C(P̂, µ̂)

= C(P̃, µ̃) + (1− µ(A1 ∪A2))C(P̂, µ̂) = C(P, µ̃),

if I define probability measure µ̂ so that if µ(A1 ∪ A2)) < 1 then µ̂(A1) = µ̂(A2) = 0 and µ̂(Ai) =

µ(Ai)/(1−µ(A1∪A2)) for i ∈ {3, . . . , m}, and otherwise so that µ̂(A1) = 1. Now, let Pb
1 = {A1, A

c
1},

Pb
2 = {A2, A

c
2}, and Pb

3 = {A1 ∪ A2, (A1 ∪ A2)
c}. Notice Pb

1, Pb
2 and Pb

3, are all coarser than P̃.

Then, since P̃ is learning strategy invariant:

C(P̃, µ) = C(Pb
3, µ) + E[C(Pb

1, µ(·|Pb
3(ω))], and C(P̃, µ̃) = C(Pb

3, µ̃) + E[C(Pb
1, µ̃(·|Pb

3(ω))].

Notice that Axiom 1 imposes that C(Pb
3, µ) = C(Pb

3, µ̃) since both µ and µ̃ assign the same

probability to the events A1 ∪ A2 and (A1 ∪ A2)
c. So, all that remains to be shown is that if

the probability measure ν̃ is a permutation of the probability measure ν on Pb
1, then C(Pb

1, ν) =

C(Pb
1, ν̃). Fix arbitrary ν(A1) = x ∈ [0, 1]. Now consider the probability measures q1, q2, q3, such

that:

q1(A1) = x, q1(A2) = 0, q1((A1 ∪A2)
c) = 1− x,

q2(A1) = 0, q2(A2) = x, q2((A1 ∪A2)
c) = 1− x,
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q3(A1) = 1− x, q3(A2) = x, q3((A1 ∪A2)
c) = 0.

Notice that q3 is a permutation of q1 on Pb
1. So then, using Axiom 1, the definition of learning

strategy invariance, and Lemma 6, all repeatedly:

C(Pb
1, q1) = C(P̃, q1) = C(Pb

3, q1) = C(Pb
3, q2)

= C(P̃, q2) = C(Pb
2, q2) = C(Pb

2, q3) = C(P̃, q3) = C(Pb
1, q3).■

Proof of Lemma 1. For all partitions P = {A1, . . . , Am} and probability measures µ defined on

P, define the vector µ(P) = (µ(A1), . . . , µ(Am)).

Suppose C satisfies Axiom 1, that Pi = {A1, . . . , Am} is a learning strategy invariant with

m ≥ 3, and P̃i is another learning strategy invariant partition that is coarser than Pi. Lemma

7 indicates that C(Pi, µ) is determined by µ(Pi), and if the strictly positive entries of µ(Pi) and

µ(P̃i) are the same (up to a permutation), then the addition of Lemma 6 and the definition of

learning strategy invariant partitions indicates that C(Pi, µ) = C(P̃i, µ) since I can pick µ so that

uncertainty about which event in Pi has been realized is fully determined by the realized event of P̃i.

What does this mean? This means that there is a function which maps from vectors of probabilities

onto the reals, ci : ∪m−1
j=1 △j → R, where △j is the j simplex, such that for any learning strategy

invariant partition P̃i coarser than Pi, if the strictly positive entries of µ(Pi) and µ(P̃i) are the

same (up to a permutation) then C(P̃i, µ) = ci(µ(P̃i)) = ci(µ(Pi)) ≡ C(Pi, µ).

So, for any binary partition Pb coarser than Pi, C(Pb, µ) = ci(µ(Pb)) (notice that this means

that C(Pb, µ) is constant with respect to permutations of µ on Pb for all such Pb since C(P, µ) is

constant with respect to permutations of µ on P). Now pick P̃i = {B1, B2, B3} so that it is coarser

than Pi and it has three elements. Lemma 5 indicates that P̃i is learning strategy invariant, and

it is easy to show each binary partition which is coarser than P̃i is coarser than Pi. Thus, for all

probability measures µ on P̃i such that µ(B1), µ(B2), and µ(B3) are all strictly less than one, the

definition of learning strategy invariance tells us:

C(P̃i, µ) = ci(µ(B1), 1− µ(B1)) + (1− µ(B1))ci

( µ(B2)

µ(B2) + µ(B3)
,

µ(B3)

µ(B2) + µ(B3)

)

= ci(µ(B2), 1− µ(B2)) + (1− µ(B2))ci

( µ(B1)

µ(B1) + µ(B3)
,

µ(B3)

µ(B1) + µ(B3)

)
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= ci(µ(B3), 1− µ(B3)) + (1− µ(B3))ci

( µ(B1)

µ(B1) + µ(B2)
,

µ(B2)

µ(B1) + µ(B2)

)
.■

Proof of Lemma 2. I say that the vector (q1, . . . , qn) is a permutation of the vector (p1, . . . , pn)

if there is a bijection π : {1, . . . , n} → {1, . . . , n} such that ∀i ∈ {1, . . . , n}, qi = pπ(i)). Before I

prove Lemma 2 I show two technical results, Lemma 8 and Lemma 9, that are helpful for proving

Lemma 2.

Lemma 8. Given a binary partition Pb, if I define cPb : ∪∞
j=1△j → R, where △j is the j simplex,

such that (for n ≥ 2): cPb(p1, . . . , pn) = C(Pb, p1, 1− p1) if p1 + p2 = 1, and otherwise:

cPb(p1, . . . , pn) = C(Pb, p1, 1− p1) + (1− p1)C
(
Pb,

p2
1− p1

,
1− p1 − p2

1− p1

)

+ . . . + (1− p1 − . . . − pm−1)C
(
Pb,

pm
1− p1 − . . . − pm−1

,
1− p1 − . . . − pm
1− p1 − . . . − pm−1

)
,

where m is the lowest integer such that p1 + . . . + pm = 1, then if (q1, . . . , qn) is a permutation

of (p1, . . . , pn), and C satisfies Axiom 1, and Axiom 2, then: cPb(q1, . . . , qn) = cPb(p1, . . . , pn),

and further if (p1, . . . , pn) is a vector (n ≥ 2) with one entry of value one, and the rest zero

cPb(p1, . . . , pn) = 0.

Proof. Given a binary partition Pb, suppose C satisfies Axiom 1, and Axiom 2, and that cPb is

defined as above. All vectors discussed in this proof are assumed to sum to one and contain only

non-negative constants. I proceed with an inductive argument, beginning by showing cPb(p, 1− p)

satisfies the desired properties. Consider cPb(p1, p2, p3) when p1, p3 > 0, and p2 = 0. Axiom 2

tells us:

cPb(p1, 1−p1)+(1−p1)cPb(0, 1) = cPb(0, 1)+ cPb(p1, 1−p1) = cPb(p3, 1−p3)+(1−p3)cPb(1, 0).

The first equality implies cPb(0, 1) = 0. Now consider cPb(q1, q2, q3) when q1, q2 > 0, and q3 = 0.

Axiom 2 tells us:

cPb(q1, q2) + (1− q1)cPb(1, 0) = cPb(0, 1) + cPb(q1, q2),

so since cPb(0, 1) = 0, I know cPb(1, 0) = 0 = cPb(0, 1), and combined with the previous two

equalities above I know:

cPb(p1, 1− p1) = cPb(p3, 1− p3) + (1− p3)cPb(1, 0) = cPb(1− p1, p1).
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Thus, cPb(p, 1 − p) = cPb(1 − p, p) for all p ∈ [0, 1]. Since cPb(1, 0) = 0, when I show cPb is

constant with respect to permutations of vectors of arbitrary length (greater or equal to two), it

establishes that if (p1, . . . , pn) is a vector (n ≥ 2) with one entry of value one, and the rest zero,

then cPb(p1, . . . , pn) = 0.

Next I show cPb(p1, p2, p3) is constant with respect to permutations. Since cPb is constant

with respect to permutation on vectors of length two, the definition of cPb , and the fact that

cPb(1, 0) = cPb(0, 1) = 0, implies cPb(p1, p2, p3) = cPb(p1, p3, p2). Thus, if I show for any proba-

bility vector of length three that cPb(p1, p2, p3) = cPb(p2, p1, p3), then cPb(p1, p2, p3) is constant

with respect to permutations since combinations of these two different pairwise permutations can

achieve any permutation desired. This is easy to show since if p1 = 1, or p2 = 1, or p1 = p2 = 0,

then I know this is true, and otherwise with Axiom 2 I know:

cPb(p1, p2, p3) = cPb(p1, 1− p1) + (1− p1)cPb

( p2
1− p1

,
1− p1 − p2

1− p1

)

= cPb(p2, 1− p2) + (1− p2)cPb

( p1
1− p2

,
1− p1 − p2

1− p2

)
= cPb(p2, p1, p3).

Now assume that cPb is constant with respect to permutations on vectors of length n ≥ 3,

and I next show cPb is constant with respect to permutations on vectors of length n + 1, and

the proof is finished. If p1 + p2 = 1, then I am done. If not, notice that cPb(p1, . . . , pn+1) =

cPb(p1, 1 − p1) + (1 − p1)cPb

( p2
1− p1

, . . . ,
pn+1

1− p1

)
, whenever p1 ̸= 1, and as part of the inductive

argument I assumed cPb was constant with respect to permutations on vectors of length n, so I

only need to show cPb(p1, p2, . . . , pn+1) = cPb(p2, p1, . . . , pn+1), which is true:

cPb(p1, p2, . . . , pn+1) = cPb(p1, 1− p1) + (1− p1)cPb

( p2
1− p1

, . . . ,
pn+1

1− p1

)

= cPb(p1, 1−p1)+(1−p1)cPb

( p2
1− p1

,
1− p1 − p2

1− p1

)
+(1−p1−p2)cPb

( p3
1− p1 − p2

, . . . ,
pn+1

1− p1 − p2

)
= cPb(p1, p2, 1− p1 − p2) + (1− p1 − p2)cPb

( p3
1− p1 − p2

, . . . ,
pn+1

1− p1 − p2

)
= cPb(p2, p1, 1− p1 − p2) + (1− p1 − p2)cPb

( p3
1− p1 − p2

, . . . ,
pn+1

1− p1 − p2

)
= cPb(p2, 1−p2)+(1−p2)cPb

( p1
1− p2

,
1− p1 − p2

1− p2

)
+(1−p1−p2)cPb

( p3
1− p1 − p2

, . . . ,
pn+1

1− p1 − p2

)
= cPb(p2, 1− p2) + (1− p2)cPb

( p1
1− p2

, . . . ,
pn+1

1− p2

)
= cPb(p2, p1, . . . , pn+1).■
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Lemma 9. Given a binary partition Pb, define cPb : ∪∞
j=1△j → R, where △j is the j simplex, as

in the statement of Lemma 8, and suppose C satisfies Axiom 1, and Axiom 2, then if (q1, . . . , qm)

and (p1, . . . , pn) are two probability vectors (vectors of weakly positive numbers that sum to one

with 1 < m < n), such that each qi is strictly positive, and can be written as the sum of one or

more pj with each pj used once in the sum of only one qi. Rename the pj(s) assigned to each qi so

that qi = pi1 + . . . pini
. Then it is true that:

cPb(p1, . . . , pn) = cPb(q1, . . . , qm) +
m∑
i=1

qicPb

(pi1
qi
, . . . ,

pini

qi
, 0
)
.

Proof. Given a binary partition Pb, suppose C satisfies Axiom 1, and Axiom 2, that cPb is defined

as in the statement of Lemma 8, and (q1, . . . , qm) and (p1, . . . , pn) are defined as in the statement

of Lemma 9 (including the renaming of each pj). I use the fact that the definition of cPb implies

cPb(p1, . . . , pn) = cPb(p1, . . . , pn, 0), and cPb(1, 0) = 0, without reference. In Lemma 8 I showed

cPb is constant with respect to permutations of vectors of arbitrary length (greater or equal to two).

Thus, all I need to do is show:

cPb(p1, . . . , pm−1, pm, . . . , pn) = cPb(q1, . . . , qm) + qmcPb

(pm
qm

, . . . ,
pn
qm

, 0
)
,

where for i ∈ {1, . . .m−1} qi = pi, 1 < m < n, and qm = pm+ . . . +pn > 0. If m = 2, or qm = pm,

this is trivially true. If m > 2 and qm > pm, then it is still true given the definition of cPb since

(assuming without loss that pn > 0):

cPb(p1, . . . , pm−1, pm, . . . , pn) = C(Pb, p1, 1− p1) + (1− p1)C
(
Pb,

p2
1− p1

,
1− p1 − p2

1− p1

)

+ . . . + (1− p1 − . . . − pm−1)C
(
Pb,

pm
1− p1 − . . . − pm−1

,
1− p1 − . . . − pm
1− p1 − . . . − pm−1

)
+(1− p1 − . . . − pm)C

(
Pb,

pm+1

1− p1 − . . . − pm
,

1− p1 − . . . − pm
1− p1 − . . . − pm−1

)
+ · · ·+ (1− p1 − . . . − pn−1)C

(
Pb,

pn
1− p1 − . . . − pn−1

,
1− p1 − . . . − pn

1− p1 − . . . − pm−1

)
= cPb(q1, . . . , qm) + qmcPb

(pm
qm

, . . . ,
pn
qm

, 0
)
.■

I am now ready to resume the proof of Lemma 2. Given a binary partition Pb = {A1, A2},

define cPb : ∪∞
j=1△j → R, where △j is the j simplex, as in the statement of Lemma 8, and
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suppose C satisfies Axiom 1, Axiom 2, and Axiom 3. Remember C(Pb, µ) = cPb(µ(A1), µ(A2))

for all probability measures µ so Lemma 8 implies that C(Pb, p, 1− p) = C(Pb, 1− p, p), for each

p ∈ [0, 1], and I thus only wish to show cPb(p, 1− p) is continuous for p ∈ [0, 1]. I proceed with a

proof by contradiction: Suppose not, and cPb(p, 1−p) is discontinuous at some point p = pd ∈ [0, 1].

Since cPb(p, 1− p) = cPb(1− p, p), it is without loss to assume pd ∈ [0, 1
2 ].

First, notice that if cPb(p, 1 − p) is continuous at p = 0 then it is continuous at p = 1
2 : this

is because Axiom 2 imposes that for small δ > 0: cPb(δ, 1
2 − δ

2 ,
1
2 − δ

2) = cPb(δ, 1 − δ) + (1 −

δ)cPb(1/2, 1/2) = cPb(12 − δ
2 ,

1
2 + δ

2) + (12 + δ
2)cPb( 2δ

1+δ ,
1−δ
1+δ ). Since Axiom 3 requires that there

is some pc ∈ [0, 1
2 ] such that cPb(p, 1 − p) is continuous at pc, it is thus without loss to assume

cPb(p, 1− p) is continuous at pc ∈ (0, 1
2 ].

Second, notice that it is not possible that the only p ∈ [0, 1
2 ] at which cPb(p, 1 − p) is

discontinuous is p = 0, because, if so, Axiom 2 once again imposes that for small δ > 0: cPb(δ, 1
2 −

δ
2 ,

1
2 − δ

2) = cPb(δ, 1 − δ) + (1 − δ)cPb(1/2, 1/2) = cPb(12 − δ
2 ,

1
2 + δ

2) + (12 + δ
2)cPb( 2δ

1+δ ,
1−δ
1+δ ), and

either:

lim sup
p↓0

cPb(p, 1− p) = H < ∞ (with H > 0) or lim sup
p↓0

cPb(p, 1− p) = ∞.

If the former is true, then I can pick arbitrarily small δ ∈ (0, 1
4) to ensure that cPb(δ, 1− δ) is arbi-

trarily close to H, cPb( 2δ
1+δ ,

1−δ
1+δ ) is less than H or arbitrarily close to it, and |(1−δ)cPb(1/2, 1/2)−

cPb(12 − δ
2 ,

1
2 + δ

2)| < 1
8H, which creates a contradiction. If, instead, the latter is true, then I

can pick arbitrarily small δ ∈ (0, 1
4) so that cPb(δ, 1 − δ) ≥ cPb(p, 1 − p)∀ p ∈ [δ, 1

2 ], and so that

|(1− δ)cPb(1/2, 1/2)− cPb(12 −
δ
2 ,

1
2 +

δ
2)| <

1
8cPb(δ, 1− δ), which again creates a contradiction as

δ < 2δ
1+δ .

Third, if cPb(p, 1−p) is discontinuous at p = 1
2 then it is discontinuous at a p ∈ {1

4 ,
1
3} because

Axiom 2 imposes that for small δ: cPb(12 − δ, 1
3 +

2δ
3 ,

1
6 +

δ
3) = cPb(12 − δ, 1

2 + δ)+(12 + δ)cPb(13 ,
2
3) =

cPb(13 + 2δ
3 ,

2
3 − 2δ

3 ) + (23 − 2δ
3 )cPb((16 + δ

3)/(
2
3 − 2δ

3 ), (
1
2 − δ)/(23 − 2δ

3 )). Thus it is without loss to

assume cPb(p, 1− p) is discontinuous at pd ∈ (0, 1
2) (given second and third point).

It is not possible for cPb(p, 1 − p) to be continuous at pc ∈ (0, 1
2 ] and discontinuous at

pd ∈ (0, 1
2), however, as if I assume this is the case I can reach a contradiction, beginning by

picking (p1, p2, p3, p4) such that they sum to one and:

p1 + p2 = pd,
p1

p1 + p2
= pc, and

p4
p3 + p4

= pc,
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so that as a result p1 + p4 = pc,
p1

p1 + p4
= pd, and

p2
p2 + p3

= pd.

How these four probabilities are selected is quite important, and this is where a lot of the magic

happens. Now, notice Lemma 9 tells us:

cPb(p1, p2, p3, p4)

= cPb(p1 + p2, p3 + p4) + (p1 + p2)cPb

( p1
p1 + p2

,
p2

p1 + p2

)
+ (p3 + p4)cPb

( p3
p3 + p4

,
p4

p3 + p4

)
= cPb(p1 + p4, p2 + p3) + (p1 + p4)cPb

( p1
p1 + p4

,
p4

p1 + p4

)
+ (p2 + p3)cPb

( p2
p2 + p3

,
p3

p2 + p3

)
.

Substituting in terms using the definitions of the four probabilities it is then clear that:

cPb(pd, 1− pd) + (pd)cPb(pc, 1− pc) + (1− pd)cPb(1− pc, pc)

= cPb(pc, 1− pc) + (pc)cPb(pd, 1− pd) + (1− pc)cPb(pd, 1− pd).

Next, cPb is discontinuous from both sides at pd if it is discontinuous at pd since I can

increase p1 and p3 by a small δ > 0, and decrease p2 and p4 by the same δ, and as δ is taken to zero,

continuity at pc implies the change in cPb(p1+p2, p3+p4)+(p1+p2)cPb

( p1
p1 + p2

,
p2

p1 + p2

)
+(p3+

p4)cPb

( p3
p3 + p4

,
p4

p3 + p4

)
goes to zero, so discontinuities at either side of pd must offset each other so

the change in cPb(p1+p4, p2+p3)+(p1+p4)cPb

( p1
p1 + p4

,
p4

p1 + p4

)
+(p2+p3)cPb

( p2
p2 + p3

,
p3

p2 + p3

)
goes to zero with δ.

Next, I show that it cannot be that:

lim sup
p↓pd

cPb(p, 1− p) = H > cPb(pd, 1− pd).

There are two cases of interest, and in both I create a contradiction. In case oneH < ∞. Case one is

not possible, however, since I can choose arbitrarily small δ > 0 and add it to p1 and subtract it from

p4 so that cPb(p1+p2, p3+p4) is arbitrarily close to H, while cPb

( p1
p1 + p4

,
p4

p1 + p4

)
is less than H

or arbitrarily close to H, and all other terms remain essentially constant, creating a contradiction.

In case twoH = ∞. Case two is also not possible, however, since I can choose arbitrarily small δ > 0

and add it to p1 and p3 and subtract it from p2 and p4 so that cPb

( p1
p1 + p4

,
p4

p1 + p4

)
is arbitrarily

close to ∞, while, other than cPb

( p2
p2 + p3

,
p3

p2 + p3

)
, all other terms remain essentially constant.
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This then implies that cPb

( p2
p2 + p3

,
p3

p2 + p3

)
drops by an arbitrarily large amount, which is not

possible since it is positive by definition. Thus, discontinuity on both sides of pd requires:

lim inf
p↓pd

cPb(p, 1− p) = L < cPb(pd, 1− pd).

I am now ready for the final contradiction as L must be positive. Increase p1 and decrease p4

by an arbitrarily small δ > 0, keeping p2 and p3 constant, so that cPb(p1+p2, p3+p4) is arbitrarily

close to L. Then it is easy to see the contradiction using Lemma 9 as in the previous paragraphs

since cPb

( p1
p1 + p4

,
p4

p1 + p4

)
is more than L or arbitrarily close to it, and all other terms remain

essentially constant. ■

Proof of Lemma 3. Given a binary partition Pb = {A1, A2}, define cPb : ∪∞
j=1△j → R, where

△j is the j simplex, as in the statement of Lemma 8, and suppose C satisfies Axiom 1, Axiom 2,

and Axiom 3. Remember Lemma 8 implies that cPb(0, 1) = 0, so I only need to show cPb(p, 1− p)

is non-decreasing for small increases to p ∈ (0, 1/2).

I proceed by assuming there is a pd ∈ (0, 1/2) such that cPb(pd, 1−pd) is decreasing for small

increases in pd and create a contradiction. First, notice that since Lemma 2 shows cPb(p, 1− p) is

continuous and Lemma 8 shows cPb(0, 1) = 0 that it must be that before any p where cPb(p, 1− p)

is locally decreasing in p there must be a smaller p where cPb(p, 1 − p) is locally increasing in p.

Second, notice that there must be infinitely many p ∈ (0, 1/2) where cPb(p, 1 − p) decreases for

small increases to p because if pd ∈ (0, 1/2) is such that cPb(pd, 1−pd) decreases for small increases

to pd I can pick (p1, p2, p3, p4) such that:

p1 + p2 = pd,
p1

p1 + p2
= pd,

p3
p3 + p4

= pd, so that
p1

p1 + p4
< pd,

and then notice Lemma 9 tells us:

cPb(p1, p2, p3, p4)

= cPb(p1 + p2, p3 + p4) + (p1 + p2)cPb

( p1
p1 + p2

,
p2

p1 + p2

)
+ (p3 + p4)cPb

( p3
p3 + p4

,
p4

p3 + p4

)
= cPb(p1 + p4, p2 + p3) + (p1 + p4)cPb

( p1
p1 + p4

,
p4

p1 + p4

)
+ (p2 + p3)cPb

( p2
p2 + p3

,
p3

p2 + p3

)
,

and then consider increasing p1 a small amount and decreasing p4 by the same small amount, while

keeping p2 and p3 constant, and notice this implies cPb(p, 1 − p) decreases for small increases to

p = p1/(p1+ p4) < pd. This all means cPb(p, 1− p) has dense local maxima and minima for p close
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to zero.

Next, I show that the largest reduction in cPb(p, 1−p) from an increase in p of any particular

small ϵ > 0 must be at achieved at a p > 1/4. Pick p1 ≤ 1/4 such that cPb is decreasing there for

an increases in p1 of ϵ > 0. Given ϵ > 0, pick p2 and p3 so that p1 + p2 + p3 = 1, and so:

p3
p2 + p3

=
p2 − ϵ

p2 − ϵ+ p3
.

Since ϵ is small and p1 ≤ 1/4, I know p1 < p3 < p2. Pick k ≥ 0 so:

k = cPb

( p3
p2 + p3

, 1− p3
p2 + p3

)
= cPb

( p2 − ϵ

p2 − ϵ+ p3
, 1− p2 − ϵ

p2 − ϵ+ p3

)
.

Lemma 8 and Lemma 9 tell us:

cPb(p1, p2, p3) = cPb(p3, 1− p3) + (1− p3)cPb

( p1
p1 + p2

,
p2

p1 + p2

)

= cPb(p1, 1− p1) + (1− p1)cPb

( p2
p2 + p3

,
p3

p2 + p3

)
.

So, if I increase p1 by ϵ and decrease p2 by ϵ, the change in cPb(p1, p2, p3) is:

(1− p3)

(
cPb

( p1 + ϵ

p1 + p2
,
p2 − ϵ

p1 + p2

)
− cPb

( p1
p1 + p2

,
p2

p1 + p2

))

= cPb(p1 + ϵ, 1− (p1 + ϵ))− cPb(p1, 1− p1)− ϵk < 0.

This implies:

cPb

( p1
p1 + p2

+
ϵ

p1 + p2
,

p2
p1 + p2

− ϵ

p1 + p2

)
− cPb

( p1
p1 + p2

,
p2

p1 + p2

)
ϵ

p1 + p2

≤ cPb(p1 + ϵ, 1− (p1 + ϵ))− cPb(p1, 1− p1)

ϵ
< 0

Thus, at
p1

p1 + p2
> p1 (notice that for small ϵ :

p1
p1 + p2

<
1

2
),

cPb is averaging a weakly steeper descent over a longer range, and thus there must be a point
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between
p1

p1 + p2
and

p1 + ϵ

p1 + p2
(notice that for small ϵ :

p1 + ϵ

p1 + p2
<

1

2
),

where the decrease of cPb over the next ϵ is as large as the decrease cPb(p1 + ϵ, 1 − (p1 + ϵ)) −

cPb(p1, 1− p1). When p1 is close to 1/4, if I pick p2 and p3 as above, keeping our small ϵ in mind,

I have:
p1

p1 + p2
>

1

4
.

cPb is a continuous function, so for all small ϵ > 0, f(p) = cPb(p + ϵ, 1 − (p + ϵ)) − cPb(p, 1 − p),

defined for compact domain p ∈ [0, 1
2 − ϵ], is continuous, and has a minimizer (perhaps not unique)

ps(ϵ) ∈ (
1

4
,
1

2
− ϵ), given what I just showed.

I am now ready to create the desired contradiction. I begin by finding a local maximum,

denote it pm, such that pm ∈ (0, 1/1000), and an ϵ ∈ (0, 1/1000), such that if δ ∈ [0, ϵ], then:

cPb(pm, 1− pm) > cPb(pm + 4δ, 1− (pm + 4δ)).

Now, let p2 = ps(ϵ) + ϵ > 1/4 + ϵ, and let:

p3 =
p2

1− pm
pm < pm, so that

p3
p2 + p3

= pm.

Finlly, let p1 = 1− p2 − p3, noticing p1 > 1/4, so:

p3
p1 + p3

+
ϵ

p1 + p3 + ϵ
<

1

2
.

Lemma 9 tells us:

cPb(p1, p2, p3) = cPb(p1, 1− p1) + (1− p1)cPb

( p2
p2 + p3

,
p3

p2 + p3

)

= cPb(p2, 1− p2) + (1− p2)cPb

( p1
p1 + p3

,
p3

p1 + p3

)
.

This means, since p2 + p3 > 1/4, if I increase p3 by ϵ, and decrease p2 by ϵ, holding p1 constant,

and consider the change in cPb(p1, p2, p3):

0 > (1− p1)
(
cPb

( p3 + ϵ

p2 + p3
,
p2 − ϵ

p2 + p3
)− cPb

( p3
p2 + p3

,
p2

p2 + p3

))
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= cPb(p2 − ϵ, 1− (p2 − ϵ))− cPb(p2, 1− p2)

+(p1 + p3 + ϵ)cPb

( p3 + ϵ

p1 + p3 + ϵ
,

p1
p1 + p3 + ϵ

)
− (p1 + p3)cPb

( p3
p1 + p3

,
p1

p1 + p3

)
≥ cPb(p2 − ϵ, 1− (p2 − ϵ))− cPb(p2, 1− p2)

+(p1 + p3 + ϵ)
(
cPb

( p3
p1 + p3 + ϵ

+
ϵ

p1 + p3 + ϵ
,

p1
p1 + p3 + ϵ

)
− cPb

( p3
p1 + p3

,
p1

p1 + p3

))
.

This implies:

0 >
cPb(ps(ϵ) + ϵ, 1− (ps(ϵ) + ϵ))− cPb(ps(ϵ), 1− ps(ϵ))

ϵ

>

cPb

( p3
p1 + p3 + ϵ

+
ϵ

p1 + p3 + ϵ
,

p1
p1 + p3 + ϵ

)
− cPb

( p3
p1 + p3

,
p1

p1 + p3

)
ϵ

p1 + p3 + ϵ

.

But remember, the way I picked ps(ϵ) implies for all δ ∈
[
ϵ,

ϵ

p1 + p3 + ϵ

]
:

cPb(ps(ϵ) + ϵ, 1− (ps(ϵ) + ϵ))− cPb(ps(ϵ), 1− ps(ϵ))

ϵ

≤
cPb

( p3
p1 + p3

+ δ,
p1

p1 + p3
− δ
)
− cPb

( p3
p1 + p3

,
p1

p1 + p3

)
δ

,

so letting δ =
ϵ

p1 + p3 + ϵ

p1
p1 + p3

∈
[
ϵ,

ϵ

p1 + p3 + ϵ

]
:

cPb(ps(ϵ) + ϵ, 1− (ps(ϵ) + ϵ))− cPb(ps(ϵ), 1− ps(ϵ))

ϵ

≤
cPb

( p3
p1 + p3

+
ϵ

p1 + p3 + ϵ

p1
p1 + p3

,
p1

p1 + p3
− ϵ

p1 + p3 + ϵ

p1
p1 + p3

)
− cPb

( p3
p1 + p3

,
p1

p1 + p3

)
ϵ

p1 + p3 + ϵ

p1
p1 + p3

=

cPb

( p3
p1 + p3 + ϵ

+
ϵ

p1 + p3 + ϵ
,

p1 + ϵ

p1 + p3 + ϵ
− ϵ

p1 + p3 + ϵ

)
− cPb

( p3
p1 + p3

,
p1

p1 + p3

)
ϵ

p1 + p3 + ϵ

p1
p1 + p3

<

cPb

( p3
p1 + p3 + ϵ

+
ϵ

p1 + p3 + ϵ
,

p1
p1 + p3 + ϵ

)
− cPb

( p3
p1 + p3

,
p1

p1 + p3

)
ϵ

p1 + p3 + ϵ

,

which establishes the desired contradiction. ■

Proof of Lemma 4. Assume C satisfies Axiom 1, Axiom 2, and Axiom 3. Given learning

34



strategy invariant partition P = {A1, . . . , Am} pick any binary partition Pb coarser than P and

define cPb : ∪∞
j=1△j → R, where △j is the j simplex, as in the statement of Lemma 8 so that, by

Lemma 7, C(P, µ) = cPb(µ(A1), . . . , µ(Am)).

I begin by showing that if there is a p ∈ (0, 1
2) such that cPb(p, 1 − p) = 0, then cPb(p, 1 −

p) = 0 ∀p ∈ (0, 1
2 ]. Assume there is p ∈ [0, 1

2) that is the largest number less than 1
2 such that

cPb(p, 1 − p) = 0 (so cPb(12 ,
1
2) > 0), let p1 = p2 = p, and let p3 = 1 − p1 − p2. Lemma 8 and

Lemma 9 imply that: cPb(p1, p2, p3) =

cPb(p1, 1− p) + (1− p1)cPb

( p2
p2 + p3

,
p3

p2 + p3

)
= cPb(p3, 1− p3) + (1− p3)cPb

( p1
p1 + p2

,
p2

p1 + p2

)
.

This and Lemma 2 and Lemma 3 imply that p3 ≥ 1
3 . But if p1 > 0, then decreasing p1 and increase

p2 by the same arbitrarily small ϵ > 0 results in a contradiction by Lemma 2 and Lemma 3 since
p2

p2 + p3
> p1, so:

cPb(p1 − ϵ, 1− (p1 − ϵ)) + (1− (p1 − ϵ))cPb

( p2 + ϵ

p2 + ϵ+ p3
,

p3
p2 + ϵ+ p3

)

> cPb(p3, 1− p3) + (1− p3)cPb

( p1 − ϵ

p1 + p2
,
p2 + ϵ

p1 + p2

)
.

Thus, p1 cannot be strictly positive, and it must be that cPb(p, 1 − p) > 0 for p ∈ (0, 1
2) if

cPb(12 ,
1
2) > 0. So, if ∃p ∈ (0, 1

2 ] such that cPb(p, 1− p) = 0, then: C(P, µ) = 0 = 0H(P, µ).

For the rest of the proof I assume cPb(p, 1− p) > 0 ∀p ∈ (0, 1
2 ]. Define h so that for n ∈ N,

h(n) ≡ cPb(1/n, . . . , 1/n, 0). Since I assumed, cPb(p, 1− p) > 0 ∀p ∈ (0, 1
2 ], h(2) > h(1) = 0, and

in general h(n) > 0 if n > 1. It is also easy to show h(n+ 1) > h(n) for all n ≥ 2 using Lemma 9

and Lemma 3:

h(n) = cPb(1/n, . . . , 1/n, 0) = cPb(1/n, . . . , 1/n) +
( 1
n

)
cPb

(1/n
1/n

,
0

1/n

)

< cPb(1/n, . . . , 1/n) +
( 1
n

)
cPb

( 1
(n+1)

1
n

,

1
n(n+1)

1
n

)
= cPb(1/n, . . . , 1/n, 1/n, 1/(n+1), 1/(n(n+1))) = cPb(1/n, . . . , 1/n, 1/(n+1), 1/n, 1/(n(n+1)))

= cPb(1/n, . . . , 1/n, 1/(n+ 1), (1/n) + 1/(n(n+ 1))) +
n+ 2

n(n+ 1)
cPb

( 1
n

n+2
n(n+1)

,

1
n(n+1)

n+2
n(n+1)

)
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≤ cPb(1/n, . . . , 1/n, 1/(n+ 1), (1/n) + 1/(n(n+ 1))) +
n+ 2

n(n+ 1)
cPb

( 1
n+1
n+2

n(n+1)

,

2
n(n+1)

n+2
n(n+1)

)
≤ · · · ≤ cPb(1/(n+ 1), . . . , 1/(n+ 1), 0) = h(n+ 1).

The rest of the proof follows the work of Shannon (1948) closely. Notice h(sr) = r · h(s),

which is reminiscent of logarithms, and is some nice foreshadowing for the rest of the proof. Given

arbitrarily small ϵ > 0, and integers s > 1 and t > 1, pick n and r so that 2/n < ϵ, and

sr ≤ tn < sr+1. So:

r log(s) ≤ n log(t) < (r + 1) log(s) =⇒ r

n
≤ log(t)

log(s)
<

r + 1

n
=⇒ | r

n
− log(t)

log(s)
| < 1

n
.

The work I did above then tells us:

h(sr) ≤ h(tn) ≤ h(sr+1) =⇒ r · h(s) ≤ n · h(t) ≤ (r + 1)h(s)

=⇒ r

n
≤ h(t)

h(s)
≤ r + 1

n
=⇒ | r

n
− h(t)

h(s)
| ≤ 1

n
.

All of this tells us:

|h(t)
h(s)

− log(t)

log(s)
| < ϵ,

which can be shown to be true ∀ϵ > 0, and thus h(n) = λ log(n), where λ must be a positive

constant.

Let pk = µ(Ak) for each Ak ∈ P. Suppose, for now, that each pk is a rational number. Then

there exists integers n1, . . . , nm, such that for all k ∈ {1, . . . , m} I have:

pk =
nk

m∑
j=1

nj

.

The interpretation is that I have a uniform distribution over
∑
j
nj equally likely states, and the

probability of the event which happens with probability pk is the probability of one of the nk

associated states occurring. Then using the definition of learning strategy invariance:

cPb

(
1∑

j
nj

, . . . ,
1∑

j
nj

)
= h

(
m∑
j=1

nj

)
= λ log

(
m∑
j=1

nj

)
= cPb(p1, . . . , pm) +

m∑
j=1

pjλi log(nj),

36



=⇒ cPb(p1, . . . , pm) = λ log

(
m∑
j=1

nj

)
−

m∑
j=1

pjλ log(nj)

=

m∑
k=1

(
pkλ log

(
m∑
j=1

nj

))
−

m∑
j=1

pjλ log(nj)

= −
m∑
k=1

pkλ log

(
nk∑
j
nj

)
= −λ

m∑
k=1

pk log(pk) = λH(P, µ),

where H is defined as in equation (1). If any of the pi are irrational, then the density of the rationals

and Lemma 2 can be used to get the same result. Thus, C(P, µ) = λH(P, µ).■

Total Uncertainty

Given some probability measure µ, define the mutual information between two partitions

P1 and P2, denoted I(P1, P2, µ), to be:

I(P1, P2, µ) =
∑

a1∈P1

∑
a2∈P2

µ(a1 ∩ a2) log
( µ(a1 ∩ a2)

µ(a1)µ(a2)

)

Then, as is well known in the literature:

H(×{Pi}2i=1, µ) = H(P1, µ) +H(P2, µ)− I(P1, P2, µ)

= E[H(P1, µ(·|P2(ω)))]

=

H(P1, µ)−I(P1,P2, µ)

+ I(P1, P2, µ) + E[H(P2, µ(·|P1(ω)))]

=

H(P2, µ)−I(P1,P2, µ)

= H(P1, µ) + E[H(P2, µ(·|P1(ω)))] = H(P2, µ) + E[H(P1, µ(·|P2(ω)))],

and note that the strict concavity of H means that I(P1, P2, µ) ≥ 0.

Mutual information can be thought of as the information that is double counted if one

were to compute the total uncertainty about the outcome of P1 and P2 by simply adding up

the uncertainty about the outcome of P1 and the uncertainty about the outcome of P2. When

the mutual information increases and the individual uncertainty about the outcome of P1 and the

outcome of P2 are held constant the total uncertainty about the outcome of P1 and P2 decreases

because the amount that remains to be learned after observing one of the outcomes of either P1 or

P2 decreases.
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Mutual information can be acquired by learning the value of either P1 or P2. When I think

of an agent that is trying to acquire information in an efficient fashion, I should always envision

them acquiring mutual information from the cheapest attribute, by learning about whichever of P1

and P2 has the lowest associated multiplier. This logic is formalized by the result in Lemma 10,

and leads almost directly to the result in Theorem 1.

Lemma 10. If C satisfies all four axioms, and Sb = {Pb
1, . . . , Pb

i , Pb
i+1, . . . , Pb

m} and S̃b =

{Pb
1, . . . , Pb

i+1, Pb
i , . . . , Pb

m} are two binary learning strategies such that Pb
i and Pb

i+1’s associated

multipliers are ordered λi ≥ λi+1, then for all probability measures µ:

C(Sb, µ) ≥ C(S̃b, µ).

Proof. Assume Pb
i and Pb

i+1’s associated multipliers are ordered λi ≥ λi+1 and that C satisfies all

four axioms. For all realizations of ∩i−1
j=1Pb

j (ω) (if i > 1), Lemma 4 indicates:

C((Pb
i , Pb

i+1), µ(·| ∩i−1
j=1 P

b
j (ω))) = λiH(Pb

i , µ(·| ∩i−1
j=1 P

b
j (ω))) + λi+1E[H(Pb

i+1, µ(·| ∩i
j=1 Pb

j (ω)))]

= λiH(Pb
i , µ(·| ∩i−1

j=1 P
b
j (ω))) + λi+1

(
H(Pb

i+1, µ(·| ∩i−1
j=1 P

b
j (ω)))− I(Pb

i , Pb
i+1, µ(·| ∩i−1

j=1 P
b
j (ω))

)
≥ λi

(
H(Pb

i , µ(·| ∩i−1
j=1 P

b
j (ω)))− I(Pb

i , Pb
i+1, µ(·| ∩i−1

j=1 P
b
j (ω))

)
+ λi+1H(Pb

i+1, µ(·| ∩i−1
j=1 P

b
j (ω)))

= λi+1H(Pb
i+1, µ(·| ∩i−1

j=1 P
b
j (ω))) + λiE[H(Pb

i , µ(·|(∩i−1
j=1P

b
j (ω)) ∩ Pb

i+1(ω)))]

= C((Pb
i+1, Pb

i ), µ(·| ∩i−1
j=1 P

b
j (ω))).

Thus, it is weakly cheaper in expectation to have Pi+1 before Pi as switching their order does

not change the expected cost of the binary partitions before or after the pair. ■

Proof of Theorem 1. Assume C satisfies all four axioms. Given some probability measure µ,

suppose Sb is a binary learning strategy such that σ(Sb) = F , and

C(Sb, µ) = min
Sb∈Sb(Ω)

C(Sb, µ).

I may assume that if Pb
i and Pb

i+1 are in Sb with associated multipliers λi and λi+1, that λi ≤ λi+1.

If not, then their order can be reversed and the resultant strategy is weakly less costly, as is shown

in Lemma 10.

If for any j ∈ {1, . . . , M}, multiplier λj ’s associated binary partitions Pb
i , . . . ,Pb

i+k in Sb
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are such that σ(Pb
i , . . . ,Pb

i+k) ̸= σ(Pb
λj
), then there are binary partitions Pb

m+1, . . . , Pb
m+l with

associated multiplier λj , such that σ(Pb
i , . . . ,Pb

i+k, Pm+1, . . . , Pb
m+l) = σ(Pb

λj
). Pb

m+1, . . . , Pb
m+l

can be appended to the end of Sb, and the resultant strategy S̃b is also such that:

C(S̃b, µ) = min
Sb∈Sb(Ω)

C(S, µ).

This is true since each appended binary partition has an expected cost of zero, since σ(Sb) = F .

Lemma 10 then implies that if I reorder S̃b so that the new learning strategy Ŝ’s binary partitions

are ordered by their multipliers, then:

C(Ŝb, µ) = min
Sb∈Sb(Ω)

C(S, µ).

I can thus assume that Sb is such that for any j ∈ {1, . . . , M} multiplier λj ’s associated binary

partitions Pb
i , . . . ,Pb

i+k in Sb are such that σ(Pb
i , . . . ,Pb

i+k) = σ(Pλj
).

For each j ∈ {1, . . . , M} I thus have that if all binary partitions Pb
i , . . . ,Pb

i+k in Sb with

multiplier λj are taken together that:

E[C((Pb
i , . . . ,Pb

i+k), µ(·| ∩i−1
t=1 P

b
t (ω)))] = E

[ i+k∑
l=i

λjH(Pb
l , µ(·| ∩l−1

t=1 P
b
t (ω)))

]

= E[λjH(Pλj
, µ(·| ∩i−1

t=1 P
b
t (ω)))] = E[λjH(Pλj

, µ(·| ∩j−1
t=1 Pλt(ω)))],

where the second equality holds due to the properties of H. This procedure can be carried out for

all µ. Thus:

C(Sb, µ) = min
Sb∈Sb(Ω)

C(S, µ).

= λ1H
(
Pλ1 , µ

)
+ E

[
λ2H

(
Pλ2 , µ(·|Pλ1(ω))

)
+ · · ·+ λMH

(
PλM

, µ(·|∩M−1
i=1 Pλi

(ω))
)]

.

This is equivalent to the equation in the statement of the theorem due to the definition of the

attributes. ■

Identifying the Cost of Information

The proof of Theorem 2 builds upon the necessary and sufficient condotions for optimal

behavior provided by Walker-Jones (2023), which are described by Theorem 1 and Theorem 3 from
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that paper. Theorem 1 and Theorem 3 from the work of Walker-Jones (2023) are presented below

with small amendments so that they correspond to the correct equations in this paper and do not

require any new notation.

Theorem 1 from the work of Walker-Jones (2023).

If P is optimal then ∀n ∈ N if option n is selected with a positive probability, Pr(n) > 0,

then ∀ω ∈ Ω the probability of it being selected in said state is positive, Pr(n|ω) > 0, and satisfies:

Pr(n|ω) =
Pr(n)

λ1
λM Pr(n|A1(ω))

λ2−λ1
λM . . . Pr(n| ∩M−1

i=1 Ai(ω))
λM−λM−1

λM e
vn(ω)
λM∑

ν∈N
Pr(ν)

λ1
λM Pr(ν|A1(ω))

λ2−λ1
λM . . . Pr(ν| ∩M−1

i=1 Ai(ω))
λM−λM−1

λM e
vν (ω)
λM

. (6)

Theorem 3 from the work of Walker-Jones (2023). Behavior P is optimal iff for all n ∈ N

with Pr(n) > 0 it is the case that Pr(n|ω) > 0 and Pr(n|ω) is described by equation (6) for each

state ω ∈ Ω, and for all n ∈ N with Pr(n) = 0 it is the case that:

E
[
E
[
. . .E

[
E
[
sn(ω|P)| ∩M−1

i=1 Ai(ω)
] λM

λM−1 | ∩M−2
i=1 Ai(ω)

]λM−1
λM−2 . . . |A1(ω)

]λ2
λ1

]
≤ 1.

Proof of Theorem 2. The proof begins by showing that if for each pair of states ωi and ωj , with

ωi ̸= ωj , one of the five conditions is satisfied, then this can be identified with the known set of

optimal behavior and the payoff functions for the different options, and λ(ωi, ωj) is identified. In

this proof it is assumed that two states are the same iff they have the same subscript.

If condition (i) is satisfied, so vn(ωi)−vm(ωi) > 0 and vm(ωj)−vn(ωj) > 0, then there exists

µ with µ(ωi)+µ(ωj) = 1 such that any P∗({n, m}, µ) features a positive probability of both n and

m being selected by the agent. This is true because for any c > 0 (and in particular c = λ(ωi, ωj))

there is a µ with µ(ωi) + µ(ωj) = 1 such that:

∑
ω∈{ωi, ωj}

e
vn(ω)

c

e
vm(ω)

c

µ(ω) > 1 and
∑

ω∈{ωi, ωj}

e
vm(ω)

c

e
vn(ω)

c

µ(ω) > 1,
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as this is true when

1− e
vn(ωj)

c

e
vm(ωj)

c

e
vn(ωi)

c

e
vm(ωi)

c

− e
vn(ωj)

c

e
vm(ωj)

c

< µ(ωi) <

e
vm(ωj)

c

e
vn(ωj)

c

− 1

e
vm(ωj)

c

e
vn(ωj)

c

− e
vm(ωi)

c

e
vn(ωi)

c

,

and it is not hard to show

0 <

1− e
vn(ωj)

c

e
vm(ωj)

c

e
vn(ωi)

c

e
vm(ωi)

c

− e
vn(ωj)

c

e
vm(ωj)

c

<

e
vm(ωj)

c

e
vn(ωj)

c

− 1

e
vm(ωj)

c

e
vn(ωj)

c

− e
vm(ωi)

c

e
vn(ωi)

c

< 1,

thus, Theorem 3 from the work of Walker-Jones (2023) indicates that both options are selected

with a positive probability when such a µ is the prior, and therefore Theorem 1 from the work of

Walker-Jones (2023) indicates that λ(ωi, ωj) solves:

Pr(n|ωi) =
Pr(n)e

vn(ωi)

λ(ωi, ωj)∑
ν∈{n,m}

Pr(ν)e
vν (ωi)

λ(ωi, ωj)

=
1

1 +
Pr(m)

Pr(n)
e

vm(ωi)−vn(ωi)

λ(ωi, ωj)

,

which clearly has a unique solution that some simple algebra produces a closed-form solution for.

If condition (ii) is satisfied, so vn(ωi) − vm(ωi) > 0, vn(ωi) − vm(ωi) ̸= vn(ωj) − vm(ωj) >

0, and vm(ωk) − vn(ωk) > 0, then, based on what is shown in the previous paragraph, there

is a prior that only assigns positive probabilities to ωi and ωk such that optimal behavior fea-

tures a positive probability of both n and m being selected by the agent, and such behavior

uniquely identifies λ(ωi, ωk). Similarly, λ(ωj , ωk) is uniquely identified by an almost identical logic.

Then, since attributes are partitions of the state space, if λ(ωi, ωk) ̸= λ(ωj , ωk) then λ(ωi, ωj) =

min(λ(ωi, ωk), λ(ωj , ωk)) (and thus λ(ωi, ωj) is identified), while if λ(ωi, ωk) = λ(ωj , ωk) then

λ(ωi, ωj) ≥ λ(ωi, ωk), but more work needs to be done. If λ(ωi, ωj) ≥ λ(ωi, ωk) then, based on

what is shown in the previous paragraph, there exists µ with µ(ωi) + µ(ωk) = 1 such that:

∑
ω∈{ωi, ωk}

e
vn(ω)

λ(ωi, ωj)

e
vm(ω)

λ(ωi, ωj)

µ(ω) > 1 and
∑

ω∈{ωi, ωk}

e
vm(ω)

λ(ωi, ωj)

e
vn(ω)

λ(ωi, ωj)

µ(ω) > 1.

41



Thus, if λ(ωi, ωj) ≥ λ(ωi, ωk), for small enough ϵ > 0, it must be that if µ̃ is defined so that

µ̃(ωk) = µ(ωk), µ̃(ωi) = µ(ωi)− ϵ, and µ̃(ωj) = ϵ, then:

(
e

vn(ωk)

λ(ωi, ωj)

e
vm(ωk)

λ(ωi, ωj)

) λ(ωi, ωj)

λ(ωi, ωk)

µ(ωk) +

(
e

vn(ωi)

λ(ωi, ωj)

e
vm(ωi)

λ(ωi, ωj)

µ̃(ωi)

µ(ωi)
+
e

vn(ωj)

λ(ωi, ωj)

e
vm(ωj)

λ(ωi, ωj)

µ̃(ωj)

µ(ωi)

) λ(ωi, ωj)

λ(ωi, ωk)

µ(ωi) > 1,

(
e

vm(ωk)

λ(ωi, ωj)

e
vn(ωk)

λ(ωi, ωj)

) λ(ωi, ωj)

λ(ωi, ωk)

µ(ωk) +

(
e

vm(ωi)

λ(ωi, ωj)

e
vn(ωi)

λ(ωi, ωj)

µ̃(ωi)

µ(ωi)
+
e

vm(ωj)

λ(ωi, ωj)

e
vn(ωj)

λ(ωi, ωj)

µ̃(ωj)

µ(ωi)

) λ(ωi, ωj)

λ(ωi, ωk)

µ(ωi) > 1,

by Jensen’s inequality, and Theorem 3 from the work of Walker-Jones (2023) thus implies any

P∗({n, m}, µ̃) features both options being selected with a positive probability, and therefore Theo-

rem 1 from the work of Walker-Jones (2023) and some algebra indicates that Pr(n|ωi) and Pr(n|ωj)

from P∗({n, m}, µ̃) are such that λ(ωi, ωj) solves:

(
1

Pr(n|ωi)
− 1

)
e

vn(ωi)

λ(ωi, ωj)

e
vm(ωi)

λ(ωi, ωj)

e
vm(ωj)

λ(ωi, ωj)

e
vn(ωj)

λ(ωi, ωj)

=

(
1

Pr(n|ωi)
− 1

)(
e

vn(ωi)−vm(ωi)

1

e
vn(ωj)−vm(ωj)

1

) 1
λ(ωi, ωj)

=
1

Pr(n|ωj)
− 1,

which clearly has a unique solution that some simple algebra produces a closed-form solution for.

If condition (iii) is satisfied, so vn(ωi) − vm(ωi) > vn(ωj) − vm(ωj) = 0 < vm(ωk) −

vn(ωk) and λ(ωi, ωj) ̸= λ(ωj , ωk) , then, based on what is shown in the previous paragraphs,

there is belief µ such that P({n, m}, µ) features a positive probability of both n and m being

selected by Theorem 3 from the work of Walker-Jones (2023) because for any c > 0 there is such a

µ with µ(ωi) + µ(ωk) = 1 and µ(ωi) ∈ (0, 1) such that:

∑
ω∈{ωi, ωk}

e
vn(ω)

c

e
vm(ω)

c

µ(ω) > 1 and
∑

ω∈{ωi, ωk}

e
vm(ω)

c

e
vn(ω)

c

µ(ω) > 1,

so λ(ωi, ωk) is identified using the logic from condition (i). Further, if the prior is µ̃ such that

µ̃(ωj) = 2ϵ, µ̃(ωi) = µ(ωi) − ϵ, and µ̃(ωk) = µ(ωk) − ϵ, for arbitrarily small ϵ > 0, then Jensen’s

inequality implies that for any non-trivial partition P of {ωi, ωj , ωk}, comprised of events denoted

At, that for d ∈ (0, c]: ∑
At∈P

( ∑
ω∈At

e
vn(ω)

c

e
vm(ω)

c

µ̃(ω|At)

) c
d

µ̃(At) > 1
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and
∑
At∈P

( ∑
ω∈At

e
vm(ω)

c

e
vn(ω)

c

µ̃(ω|At)

) c
d

µ̃(At) > 1,

so, letting c = max(λ(ωi, ωj), λ(ωi, ωk), λ(ωj , ωk)) and d = min(λ(ωi, ωj), λ(ωi, ωk), λ(ωj , ωk))

(noticing that λ(ωi, ωj), λ(ωi, ωk), and λ(ωj , ωk), can feature at most two unique values due to

the nature of partitions, more on this below), Theorem 3 from the work of Walker-Jones (2023)

indicates that P({n, m}, µ̃) features a positive probability of both n and m being selected, and thus

Theorem 1 from the work of Walker-Jones (2023) indicates that each of these options is selected

with a positive probability in each of the three states that occur with a positive probability. For

the remainder of the consideration of condition (iii) assume that n and m are the only available

options and the prior is the µ̃ that is constructed immediately above. Notice that, since attributes

are partitions of the state space, only one of three cases is possible, either λ(ωi, ωj) = λ(ωj , ωk) and

then λ(ωi, ωj) = λ(ωj , ωk) ≤ λ(ωi, ωk), or λ(ωi, ωj) > λ(ωj , ωk) and then λ(ωi, ωj) > λ(ωj , ωk) =

λ(ωi, ωk), or λ(ωi, ωj) < λ(ωj , ωk) then λ(ωj , ωk) > λ(ωi, ωj) = λ(ωi, ωk), so regardless of which

of the three cases is realized, at most two attributes (non-trivial partitions) are required to model

learning when the prior is restricted to ωi, ωj , and ωk, call them A1 and A2 with associated

multipliers λ1 and λ2 (λ2 ≥ λ1, and λ2 = λ1 and A2 = A1 iff only one attributes is required

since λ(ωi, ωj) = λ(ωj , ωk) = λ(ωi, ωk)). Notice that which of these three cases is realized can

be inferred from optimal behavior. If λ(ωi, ωj) = λ(ωj , ωk) ≤ λ(ωi, ωk), so A1(ωj) = {ωj}, then

Theorem 1 from the work of Walker-Jones (2023) implies:

Pr(n|ωj) =
Pr(n)

λ1
λ2 Pr(n|A1(ωj))

λ2−λ1
λ2 e

vn(ωj)

λ2∑
ν∈{n,m}

Pr(ν)
λ1
λ2 Pr(ν|A1(ωj))

λ2−λ1
λ2 e

vν (ωj)

λ2

=
Pr(n)

λ1
λ2 Pr(n|ωj)

λ2−λ1
λ2∑

ν∈{n,m}

Pr(ν)
λ1
λ2 Pr(ν|ωj)

λ2−λ1
λ2

⇐⇒ Pr(n)
λ1
λ2 Pr(n|ωj)

λ2−λ1
λ2 + Pr(m)

λ1
λ2 Pr(m|ωj)

λ2−λ1
λ2 =

(
Pr(n)

Pr(n|ωj)

)λ1
λ2

⇐⇒ Pr(n|ωj)

(
Pr(n)

Pr(n|ωj)

)λ1
λ2

+ Pr(m|ωj)

(
Pr(m)

Pr(m|ωj)

)λ1
λ2

=

(
Pr(n)

Pr(n|ωj)

)λ1
λ2
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⇐⇒
(

Pr(n)

Pr(n|ωj)

)λ1
λ2

+ Pr(m|ωj)

((
Pr(m)

Pr(m|ωj)

)λ1
λ2

−
(

Pr(n)

Pr(n|ωj)

)λ1
λ2

)
=

(
Pr(n)

Pr(n|ωj)

)λ1
λ2

⇐⇒ Pr(m)

Pr(m|ωj)
=

Pr(n)

Pr(n|ωj)
,

and since Pr(n|ωj) = Pr(n) and Pr(m|ωj) = Pr(m) satisfy that last equality, and Pr(n|ωj) +

Pr(m|ωj) = 1 and Pr(n)+Pr(m) = 1, the only solution is Pr(n|ωj) = Pr(n) and Pr(m|ωj) = Pr(m).

If, instead, λ(ωi, ωj) > λ(ωj , ωk) = λ(ωi, ωk), so A1(ωj) = {ωi, ωj}, then Theorem 1 from the work

of Walker-Jones (2023) implies:

Pr(n|ωj) =
Pr(n)

λ1
λ2 Pr(n|A1(ωj))

λ2−λ1
λ2∑

ν∈{n,m}

Pr(ν)
λ1
λ2 Pr(ν|A1(ωj))

λ2−λ1
λ2

,

and Pr(n|A1(ωj)) > Pr(n) since Pr(m|A1(ωk)) = Pr(m|ωk) > Pr(m) (the last inequality is not hard

to show with Theorem 1 from the work of Walker-Jones (2023)), so Pr(n|ωj) > Pr(n). Finally,

if λ(ωj , ωk) > λ(ωi, ωj) = λ(ωi, ωk), so A1(ωj) = {ωj , ωk}, then Theorem 1 from the work of

Walker-Jones (2023) similarly implies Pr(n|A1(ωj)) < Pr(n) since Pr(n|A1(ωi)) = Pr(n|ωi) > Pr(n)

(the last inequality is not hard to show with Theorem 1 from the work of Walker-Jones (2023)),

so Pr(n|ωj) < Pr(n). Thus, if Pr(n|ωj) = Pr(n) then λ(ωi, ωj) = λ(ωj , ωk) ≤ λ(ωi, ωk), if

Pr(n|ωj) > Pr(n) then λ(ωi, ωj) > λ(ωj , ωk) = λ(ωi, ωk), and if Pr(n|ωj) < Pr(n) then λ(ωj , ωk) >

λ(ωi, ωj) = λ(ωi, ωk). Whether or not condition (iii) is satisfied can thus be inferred from the set

of optimal behavior, and if it is satisfied then Pr(n|ωj) ̸= Pr(n), and, thus, there are two cases

to deal with: Pr(n|ωj) > Pr(n) and Pr(n|ωj) < Pr(n). If Pr(n|ωj) > Pr(n), then λ(ωi, ωj) >

λ(ωj , ωk) = λ(ωi, ωk) and A1(ωj) = {ωi, ωj}, remember that λ(ωi, ωk) is known, and Theorem 1

from the work of Walker-Jones (2023) implies λ(ωi, ωj) solves:

Pr(n|ωj) =
Pr(n)

λ(ωi, ωk)

λ(ωi, ωj)Pr(n|A1(ωj))
λ(ωi, ωj)−λ(ωi, ωk)

λ(ωi, ωj) e
vn(ωj)

λ(ωi, ωj)∑
ν∈{n,m}

Pr(ν)
λ(ωi, ωk)

λ(ωi, ωj)Pr(ν|A1(ωj))
λ(ωi, ωj)−λ(ωi, ωk)

λ(ωi, ωj) e
vν (ωj)

λ(ωi, ωj)

=
1

1 +

(
Pr(m)

Pr(n)

)λ(ωi, ωk)

λ(ωi, ωj)
(
Pr(m|A1(ωj))

Pr(n|A1(ωj))

)λ(ωi, ωj)−λ(ωi, ωk)

λ(ωi, ωj)

,
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=
1

1 +
Pr(m|A1(ωj))

Pr(n|A1(ωj))

(
Pr(m)

Pr(m|A1(ωj))

Pr(n|A1(ωj))

Pr(n)

)λ(ωi, ωk)

λ(ωi, ωj)

,

which clearly has a unique solution since Pr(n|A1(ωj)) > Pr(n) and Pr(m|A1(ωj)) < Pr(m). If,

instead, Pr(n|ωj) < Pr(n), then A1(ωj) = {ωj , ωk}, λ(ωj , ωk) > λ(ωi, ωj) = λ(ωi, ωk), λ(ωi, ωk) is

known, and thus λ(ωi, ωj) is identified, as is λ(ωj , ωk) since Theorem 1 from the work of Walker-

Jones (2023) implies it solves:

Pr(n|ωj) =
Pr(n)

λ(ωi, ωk)

λ(ωj, ωk)Pr(n|A1(ωj))
λ(ωj, ωk)−λ(ωi, ωk)

λ(ωj, ωk) e
vn(ωj)

λ(ωj, ωk)∑
ν∈{n,m}

Pr(ν)
λ(ωi, ωk)

λ(ωj, ωk)Pr(ν|A1(ωj))
λ(ωj, ωk)−λ(ωi, ωk)

λ(ωj, ωk) e
vν (ωj)

λ(ωj, ωk)

=
1

1 +

(
Pr(m)

Pr(n)

) λ(ωi, ωk)

λ(ωj, ωk)
(
Pr(m|A1(ωj))

Pr(n|A1(ωj))

)λ(ωj, ωk)−λ(ωi, ωk)

λ(ωj, ωk)

,

=
1

1 +
Pr(m|A1(ωj))

Pr(n|A1(ωj))

(
Pr(m)

Pr(m|A1(ωj))

Pr(n|A1(ωj))

Pr(n)

) λ(ωi, ωk)

λ(ωj, ωk)

,

which clearly has a unique solution that some simple algebra produces a closed-form solution for

as Pr(n|A1(ωj)) < Pr(n) and Pr(m|A1(ωj)) > Pr(m).

If condition (iv) is satisfied, so vn(ωi) − vm(ωi) = vn(ωj) − vm(ωj) > 0 < vm(ωk) −

vn(ωk) and λ(ωi, ωk) ̸= λ(ωj , ωk), then Theorem 3 from the work of Walker-Jones (2023) im-

plies there is µ with µ(ωi)+µ(ωk) = 1 and µ(ωi) ∈ (0, 1) such that P({n, m}, µ) features a positive

probability of both n and m being selected as for any c > 0 there is such a µ with:

∑
ω∈{ωi, ωk}

e
vn(ω)

c

e
vm(ω)

c

µ(ω) > 1 and
∑

ω∈{ωi, ωk}

e
vm(ω)

c

e
vn(ω)

c

µ(ω) > 1,

so λ(ωi, ωk) is identified using the logic from condition (i). Similarly, λ(ωj , ωk) is identified, and,

if λ(ωi, ωk) ̸= λ(ωj , ωk), as is the case when condition (iv) is satisfied, then it is evident from the

set of optimal beahvior as a result, and λ(ωi, ωj) = min(λ(ωi, ωk), λ(ωj , ωk)) due to the nature of

partitions.

If condition (v) is satisfied, so vn(ωi)−vm(ωi) = 0, vn(ωk)−vm(ωk) > 0 < vm(ωr)−vn(ωr),

and λ(ωi, ωk) ̸= λ(ωi, ωr), then the work done in the consideration of condition (iii) above indicates
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that this is observable and λ(ωi, ωk) and λ(ωi, ωr) are both identified by the set of optimal choice

behavior. Similarly, if condition (v) is satisfied, so vn(ωj) − vm(ωj) = 0, vn(ωk) − vm(ωk) > 0 <

vm(ωr)− vn(ωr), and λ(ωj , ωk) ̸= λ(ωj , ωr), then the work done in the consideration of condition

(iii) above indicates that this is observable and λ(ωj , ωk) and λ(ωj , ωr) are both identified by the set

of optimal choice behavior. Further, if condition (v) is satisfied then either λ(ωi, ωk) ̸= λ(ωj , ωk)

and λ(ωi, ωj) = min(λ(ωi, ωk), λ(ωj , ωk)) due to the nature of partitions, or λ(ωi, ωr) ̸= λ(ωj , ωr)

and λ(ωi, ωj) = min(λ(ωi, ωr), λ(ωj , ωr)) due to the nature of partitions, so either way λ(ωi, ωj)

is identified.

What remains to be shown is that if for each pair of ωi and ωj in Ω, if λ(ωi, ωj) is known, then

H is known. First, organise all the λ(ωi, ωj) into groups so that two such λs are in the same group

iff they have the same value, and number the groups so that groups with lower numbers have lower

values. Then λ1 must be equal to the value of the members of group 1, λ2 must be equal to the

value of the members of group 2, and continuing in this way, λM must be the value of the members

of the highest group, so the multipliers λM > · · · > λ1 > 0 have been identified. Next, notice that

A1(ωi) = A1(ωj) iff λ(ωi, ωj) ̸= λ1, so the events that constitute A1 are known. Further, for each

ωi and ωj such that A1(ωi) = A1(ωj), ∩2
k=1Ak(ωi) = ∩2

k=1Ak(ωj) iff λ(ωi, ωj) ̸= λ2, so the events

that constitute ∩2
k=1Ak are known. Similarly, for each m ∈ {1, . . . , M − 1} and ωi and ωj such

that ∩m
k=1Ak(ωi) = ∩m

k=1Ak(ωj), ∩m+1
k=1 Ak(ωi) = ∩m+1

k=1 Ak(ωj) iff λ(ωi, ωj) ̸= λm+1, so the events

that constitute ∩m+1
k=1 Ak are known. Thus, while the attributes themselves are not identified, H is

identified. ■
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