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Abstract

A novel data enrichment demonstrates that experiment subjects are more

likely to invest effort into learning about the value of options if simple choice

parameters, like price, differ from previous choice problems. This increase in

effort in ‘unfamiliar’ choice problems means that the behavior of many subjects

violate even the most flexible model of costly learning if the cost for information

is assumed to be constant across choice problems with the same prior beliefs.

This observation motivates the introduction of heterogeneous decision mak-

ers into a standard and more restrictive (posterior separable) model of costly

learning to better fit the data.
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1 Introduction

In our modern world decision makers (DMs) are increasingly inundated with in-

formation. Incorporating this information into choices requires the costly investment

of time and effort. As a result of the cost of learning, DMs often do not acquire all

the information that may be relevant to their decision.

The scarcity of attention that results from an over abundance of information

motivates the study of rational inattention (Sims, 2003), a model in which DMs ac-

quire information “as if” they solve an optimization problem, weighing the benefits

of better choices against the costs of acquiring more detailed information. The work

of Sims (2003) has inspired a rapidly growing literature that demonstrates the signif-

icance of costly learning in a number of economics’ sub-fields (Maćkowiak, Matějka,

& Wiederholt, 2023).

Understanding and accurately modelling the cost of information is important

for answering standard economic questions for at least two reasons. First, costly

learning is relevant to predicting what a DM would choose if parameters such as

price change. If the information a DM acquires changes when the price of an option

changes, knowing this is crucial for accurately predicting the probability of the op-

tion being selected at a new price. Second, understanding what information a DM

acquires is significant for understanding the preferences of a DM. The revealed pref-

erence approach is predicated on the assumption that the option the DM selects is

preferred to the options they1 do not select. When partial information acquisition

can result in the DM selecting an option that has a relatively low payoff, it is more

difficult to recover preferences. To identify preferences, a good understanding of what

information the DM is acquiring is needed.

Studying costly learning is difficult because it depends on inputs that are difficult

to measure such as time, effort, and cognitive resources, and it is thus difficult to

1I use ‘they’ instead of she or he. When I use ‘they’ as a singular noun I conjugate the verb, i.e.
I use ‘do’ instead of ‘does,’ as recommended by the APA style guide (Singular “They”, n.d.).
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quantify the relationship between these inputs and outputs such as the quality or

accuracy of decisions. As a result, it can be hard to know what mathematical structure

should be imposed onto the costs of information.

This paper provides characterizations of state dependent choice probabilities

that can arise from various information cost functions in a natural setting. Impor-

tantly, I show that the testable implications of the models are not vacuous and vary

depending on the assumptions on the information cost function. This paper is also

the first to discuss and characterize the testable implications of a “random utility”

version of the “standard posterior separable” model, which allows for heterogeneous

beliefs and cost functions for information, and is useful for analysis of both individ-

ual level and aggregate data. Aggregating the behavior of heterogeneous DMs that

each pay for information according to a posterior separable model predicts changes

in demand that are inconsistent with a representative DM version of the posterior

separable model, but are still more specific than the most general model of costly

learning. This result may be surprising to some readers whose intuition is based on

random utility models since, in such models, if the value distribution of DMs is not

restricted to be in a particular parametric class then aggregating over heterogeneous

DMs always produces behavior that is consistent with some representative DM.

This paper also introduces an experiment to test the heterogeneous model. The

experimental design is novel as it allows me to uncover whether subjects indeed behave

as if their information cost is random. The data enrichment shows that most subjects

fluctuate back and forth between learning and not learning in a way that violates even

the most flexible model of costly learning if it is assumed that the cost function for

information is constant across choice problems in which subjects have the same prior

belief. Fatigue is unsurprisingly shown to be an issue, but even allowing for fatigue

cannot rationalize the data of many subjects as choice problems that are novel, in

the sense that their parameters differ from previous choice problems, seem to increase

subjects’ willingness to invest effort into acquiring information.
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In the literature on rational inattention it is standard to assume that the cost

function for information is “posterior separable” (Caplin & Dean, 2013), which is

to say the cost of reaching different posterior beliefs is additively separable, as this

assumption is conducive to analysis, has been provided with micro-foundation from

dynamic learning models (e.g., Morris & Strack, 2019; Bloedel & Zhong, 2021; Hébert

& Woodford, 2023), and axiomatic models of costly learning often produce posterior

separable models (e.g., Mensch, 2018; Pomatto, Strack, & Tamuz, 2023). Denti

(2022) provides an important characterization of the behavior that can be rational-

ized in general contexts by posterior separable learning costs, but further shows that

subjects in an experiment conducted by Dean and Neligh (2023) frequently violate

the standard and quite flexible posterior separable model of costly learning.

This paper explores a natural explanation for why the standard posterior sepa-

rable model can fail and how it can be amended to account for observed behavioral

patterns. The solution is motivated by addressing a challenge associated with study-

ing costly learning; the necessitated aggregation of data.

Even estimating the outcome of costly learning is difficult because incomplete

information acquisition results in behavior that is generally stochastic in nature; what

a researcher wishes to study is the probabilities of different options being selected in

different states of the world, what is referred to in the literature as “state dependant

stochastic choice data” (Caplin & Dean, 2015; Caplin & Martin, 2015). Collecting

this type of data requires aggregation of some kind. At the very least, aggregation

of different decision outcomes from the same individual making choices repeatedly in

similar but slightly varied choice problems is required to estimate such probabilities.

The impact of aggregation, even though it is necessitated empirically, has not yet

received much attention in the theory literature.

When the specifics of the experiment conducted by Dean and Neligh (2023) are

considered, however, the aggregation of data seems to provide a natural explanation

for the shortfalls of the posterior separable model. Consider a DM learning about
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which of two possible states of the world has been realized, call them state 1 and state

2, each of which is equally likely a priori. Suppose the DM also has three options to

pick between: option 1, which is best if the learning of the DM indicates that there is

a high probability that state 1 has been realized, option 2, which is best if the learning

of the DM indicates that there is a high probability that state 2 has been realized,

and option 3, which is only best if the probability of each of the two states is close

to one half. Denti (2022) shows with that paper’s Proposition 4 that, generically,

the posterior separable model predicts that there should not be more options with a

positive probability of being selected than there are possible states of the world. The

experiment of Dean and Neligh (2023), in contrast, indicates that one should expect

a subject will likely select all three of the options in this paragraph’s example with

positive probabilities.

If a non-constant cost function for information is introduced, as is done in this

paper, then experiment subjects selecting all three options from the example in the

previous paragraph with positive probabilities begins to make sense. Suppose that

initially a subject is putting effort into learning and they always convince themselves

that either state 1 or 2 is likely enough that they select option 1 or 2. But then

the repeated choices that are necessary for aggregating data to get state dependant

stochastic choice data cause the subject to fatigue (which one can argue is analogous

to an increase in the cost of information), and eventually the subject stops investing

effort into learning and simply picks the option that is best at their prior belief; option

3.

Is the gap between predicted and observed behavior in this example a failure

of the posterior separable model or an issue with assuming that the cost function

for information is constant? This paper argues that it is the latter, though such an

assumption is the standard in the field of rational inattention.
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2 Model

Consider a DM choosing between two options, option X and option Y. Option

Y is referred to as the uncertain option because there is some uncertainty about

the payoff the DM gets from selecting it: The DM’s payoff from option Y, u(ω) ∈ R,

is determined by the state ω ∈ Ω = {ω, ω}, with u(ω) < u(ω). The DM knows the

distribution µ ∈ ∆(Ω) over states, which is referred to as their prior belief.2 Option

X is referred to as the safe option because the DM knows they receive a payoff of

p ∈ R from selecting it, and p is referred to as the price of selecting option Y because

the DM must give up the opportunity to have a payoff of p to select option Y.

Given µ, the behavior at a finite set of prices P ⊆ R (a finite set of values

for option X), is a mapping s : P → S ≡ [0, 1] × [0, 1]. Namely, at each price

p ∈ P the researcher observes the information outcome s(p) = (s(p), s(p)) =

(Pr(Y |ω, p), Pr(Y |ω, p)), that describes the probability of the DM selecting option

Y at each ω, denoted Pr(Y|ω, p) ≡ 1 − Pr(X|ω, p). This paper’s model focuses on

outcomes because this is the observable behavior that is measured in a typical dataset.

The DM is said to learn at a price p if Pr(Y|ω, p) ̸= Pr(Y|ω, p) and µ(ω) ∈

(0, 1). In other words, the DM is learning whenever their probability of selecting

option Y changes with the realization of ω, because this is indicative of the DM at

least partially differentiating between ω and ω.

2.1 Costly Learning

A cost function (for information) Cµ : S → R+ describes the minimal cost of

achieving each potential information outcome.3 The cost function does not depend

on price, which is to say this paper’s model assumes that a price change does not

impact the cost to the DM of achieving a given information outcome. The realized

2The belief µ assigns a strictly positive probability to each state unless stated otherwise.
3The cost function has a subscript µ because I do not impose that it is constant in µ, as would be

the case if I instead, for instance, assumed a “uniformly” posterior separable cost function (Caplin,
Dean, & Leahy, 2022).
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cost Cµ(s(p)) might change when p changes, but the function Cµ does not change if

p changes.

If the DM can achieve an outcome without doing any learning, then it is natural

to think the outcome should be costless. So, the DM should be able to select option Y,

or option X, or randomize over these options, all without incurring any learning costs.

Assumption 1: ∀x ∈ [0, 1], Cµ(x, x) = 0. Further, it is natural to assume that the

DM can randomize over information outcomes without cost. So, if an information

outcome is a convex combination of other information outcomes, then the cost of the

information outcome should be weakly lower than the appropriate convex combination

of the costs of the other information outcomes, which implies that more information

in a Blackwell (1951, 1953) sense is weakly more costly. Assumption 2: Cµ is a

weakly convex function.4

Assumption 1 and Assumption 2 represent the minimal structure that is as-

sumed of all cost functions for information in this paper. Given the belief of the DM,

µ, the cost function for information outcomes is defined as a mapping from S onto

the positive reals, Cµ : S → R+, which satisfies Assumption 1 and Assumption 2.

Definition: Given a prior belief µ and a set of prices P , the behavior is rationalized

by a costly learning model if there are payoffs for option Y, u(ω) and u(ω) with

u(ω) < u(ω), and a cost function for information outcomes Cµ such that, ∀ p ∈ P ,

s(p) = (s(p), s(p)) ∈ argmax
(s, s)∈S

(
p+ sµ(ω)(u(ω)− p) + sµ(ω)(u(ω)− p)− Cµ(s, s)

)
.

Given p and µ, the expected gain in payoff the DM receives when they choose

an information outcome s = (s, s) instead of picking option X with certainty is

defined by:

sµ(ω)(u(ω)− p) + sµ(ω)(u(ω)− p)− Cµ(s, s).

Maximizing the gain in payoff eases exposition and is equivalent to maximizing the

4By ‘weakly convex’ I mean convex but not necessarily strictly convex.
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expected payoff as the difference between them is a simple re-normalization of option

payoffs. When p increases the gain in payoff from selecting option Y decreases. As a

result, when p increases, the gain in payoff from an information outcome s = (s, s) ∈

S decreases in proportion to the unconditional probability of selecting option Y

that the information outcome results in, which is sµ(ω)+sµ(ω). So, the gain in payoff

from information outcomes that create lower unconditional probabilities of selecting

option Y decrease less quickly when p increases. This suggests the DM should choose

an information outcome with a lower unconditional probability of selecting option Y

when price increases, as is shown by Theorem 1.

Theorem 1. Given a prior belief µ and a finite and non-empty set of prices P , the

behavior is rationalized by a costly learning model if and only if the following three

properties are satisfied:

(i) The DM is weakly more likely to select option Y when its payoff is high:

∀ p ∈ P : Pr(Y|ω, p) ≤ Pr(Y|ω, p).

(ii) The DM is weakly less likely to select option Y when price increases:

Pr(Y|p) ≡ µ(ω)Pr(Y|ω, p) + µ(ω)Pr(Y|ω, p) is weakly decreasing in p.

(iii) If there is a price at which the DM randomizes over selecting option X and option

Y without learning, then they do not learn at any price, and select either option X

or option Y with probability one at all other prices:

if ∃p ∈ P : Pr(Y|ω, p)=Pr(Y|ω, p) ∈ (0, 1), then ∀p̃ ∈ P\p: Pr(Y |p̃) ∈ {0, 1}.

Proof. See Appendix 1.

If no structure is imposed on the learning costs of the DM beyond Assumption

1 and Assumption 2 then Theorem 1 describes the behavioral patterns that are con-

sistent with this most general model of costly learning. Randomization is significant

in property (iii) because it indicates that the DM could instead optimally pick X or

Y , which, if they learned at some other price, could be used to create a violation of

(ii).
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If I further assume that the researcher knows the expected payoff from option

Y , which is µ(ω)u(ω) + µ(ω)u(ω), then predictions can be made for if a price change

impacts whether or not the DM will learn, as is formalized in Corollary 1. Many

results in the rational inattention literature, for instance in the work of Caplin et

al. (2022), assume that the utility function of the DM is known, and thus assuming

that the expected payoff of Y is known is a relatively weak assumption, and in the

experiment presented in this paper the expected payoff from option Y in terms of

probability points is known.

Corollary 1. Given a prior belief µ, and payoffs for option Y, u(ω) and u(ω) with

u(ω) < u(ω), suppose the behavior is rationalized by a costly learning model with

cost function for information outcomes Cµ, and that there are two prices p1, p2 ∈ P

with p1 < p2.

(i) If the prices are below the expected payoff from option Y, i.e. p1 < p2 ≤

µ(ω)u(ω) + µ(ω)u(ω), then the DM learns at p2 if they learn at p1:

Pr(Y|ω, p1) ̸= Pr(Y|ω, p1) ⇒ Pr(Y|ω, p2) ̸= Pr(Y|ω, p2).

(ii) If the prices are above the expected payoff from option Y, i.e. µ(ω)u(ω) +

µ(ω)u(ω) ≤ p1 < p2, then the DM learns at p1 if they learn at p2 :

Pr(Y|ω, p2) ̸= Pr(Y|ω, p2) ⇒ Pr(Y|ω, p1) ̸= Pr(Y|ω, p1).

Proof. Suppose the DM learns at p1. If p1 < p2 ≤ µ(ω)u(ω) + µ(ω)u(ω), then when

p increases, the gain in payoff from s(p1) strictly decreases, but not as quickly as the

gain in payoff from not learning and selecting option Y, so the DM must learn at p2.

Suppose instead the DM learns at p2. If µ(ω)u(ω) + µ(ω)u(ω) ≤ p1 < p2, then when

p decreases the gain in payoff from s(p2) increases while the gain in payoff from not

learning and selecting X stays the same, so the DM must learn at p1. ■

If the researcher can observe if the DM is acquiring information at different

prices, which is a binary variable, Corollary 1 provides a means of testing a very

general model of costly learning without needing to estimate choice probabilities, a
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variable that is continuous and inherently difficult to estimate.

2.2 The Posterior Separable (PS) Learning Model

The standard in the field of rational inattention is to model the DM paying for

information according to a posterior separable (PS) cost function (Caplin & Dean,

2013; Caplin et al., 2022). This means the DM selects what to learn by choosing how

confident to be in their choices after they finish learning. So, they pick Pr(ω|X, p)

and Pr(ω|Y, p), the probability that state ω has been realized after selecting each of

the two options.

To apply a PS model I need a function that measures how ‘informed’ different

posteriors are. Denote this weakly convex function c : [0, 1] → R. When the DM

learns they pay for the information based on the change in c it creates. Again, weak

convexity of c ensures that more information (in a Blackwell (1951, 1953) sense) is

weakly more costly. Given belief µ, if the DM learns at a price p and their behavior

is rationalized by a costly learning model, then Pr(ω|X, p) < µ(ω) < Pr(ω|Y, p),

and it is easy to compute the unconditional probabilities of the DM selecting the

two options. Then, when the DM learns at a price p in the PS model they pay the

following: Pr(Y| p)(c(Pr(ω|Y, p))− c(µ(ω))) + Pr(X|p)(c(Pr(ω|X, p))− c(µ(ω))),

for their information, which is the probability of them selecting Y times the ‘increase

in information’ (as measured by c) that occurred before they selected Y, plus the

chance of them selecting option X times the ‘increase in information’ (as measured

by c) that occurred before they selected X. An example of a commonly used measure

the ‘informativeness’ of a posterior is Shannon Entropy (Shannon, 1948), e.g. in the

work of Matějka and McKay (2015).

Definition: Given a prior belief µ, the cost function for information outcomes Cµ is a

PS cost function for information outcomes if there is measure of informedness,
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a weakly convex c : [0, 1] → R, such that ∀s ∈ S with s < s:

Cµ(s, s) = (sµ(ω) + sµ(ω))

(
c

(
sµ(ω)

sµ(ω) + sµ(ω)

)
− c(µ(ω))

)

+(1− sµ(ω)− sµ(ω))

(
c

(
(1− s)µ(ω)

(1− s)µ(ω) + (1− s)µ(ω)

)
− c(µ(ω))

)
.

Definition: Given a prior belief µ and a set of prices P , the behavior is rationalized

by a PS model if there are payoffs for option Y, u(ω) and u(ω) with u(ω) < u(ω),

and a PS cost function for information outcomes Cµ such that, ∀ p ∈ P ,

s(p) = (s(p), s(p)) ∈ argmax
(s, s)∈S

(
sµ(ω)(u(ω)− p) + sµ(ω)(u(ω)− p)− Cµ(s, s)

)
.

Theorem 2. Given a prior belief µ and a finite and non-empty set of prices P , the

behavior is rationalized by a PS model if and only if it is rationalized by a costly

learning model and Pr(ω|X, p) and Pr(ω|Y, p) are both weakly increasing over the

set of p where the DM learns.

Proof. See Appendix 1.5

Theorem 2 says that when p increases in a PS model the DM is more confident

they have made the right decision when selecting option Y and less confident they

made the right decision when selecting option X.

2.3 An Aggregate PS Model: Fatigue and Novelty

Even if the structure imposed by a particular class of costly learning models

is compelling in a setting, datasets used for analysis do not typically focus on an

individual DM. Typically datasets aggregate behavior over DMs with potentially

heterogeneous (accurate) prior beliefs and costs for information outcomes. Even when

5Ambuehl (2017) shows necessity of the conditions for a smooth and strictly convex c.
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a dataset does feature observations from an individual, that individual might have

varying private pieces of information (that change their prior belief) and a varying

information cost function due to either something akin to fatigue or variation in the

choice environment that is not observable to the researcher, e.g. variation in the

number of store clerks on the floor when the individual makes the decision. This

subsection characterizes an aggregate version of the PS model in Section 2.2, and

shows that aggregating choice data from heterogeneous PS DMs (either different

individuals or varying versions of the same individual) can result in behavior that

cannot be rationalized with a PS model. This is in contrast with aggregation of the

flexible costly learning model in Section 2.1, which, it is easy to show, does not change

the characterization of what behavior can be rationalized.

Informally, behavior is rationalized by an aggregate PS model if there are dif-

ferent types of DM, each with their own probability of occuring, prior belief, and PS

cost function for information outcomes, such that each type has rationalized behav-

ior, and if behavior is averaged over the different types then the observed behavior is

obtained. This is akin to the way DMs are modeled in Random Utility models.

Definition: Given a prior belief µ, the behavior is rationalized by an aggregate

PS model if there are payoffs for option Y, u(ω) and u(ω) with u(ω) < u(ω),6 T ∈ N

types of DM each of which has probability of occurring πt > 0, a belief about the

probability of ω occurring µt(ω) ∈ [0, 1], and behavior st, which is Prt(Y|ω, p) for

each state and price and type, such that each type’s behavior is rationalized by a PS

model7 with payoffs for option Y u(ω) and u(ω), and:

(i) The probabilities of the different types sum to one, and their mean belief is the

6I assume that u(ω) and u(ω) are the same for each type as this is more challenging. Given
the result in Theorem 3, allowing utility to differ across types would not substantially change the
characterization of rationalized behavior as long as Y is preferred in ω, the exception being that
property (iii) from Theorem 1 could be violated.

7Note that different types can have their behavior rationalized by different PS models, namely I
do not impose that different types have the same PS cost function for information outcomes.

12



distribution over states observed by the researcher:

T∑
t=1

πt = 1,
T∑
t=1

µt(ω)πt = µ(ω).

(ii) Given any pair of price p and state ω, the mean behavior is the behavior observed

by the researcher:

∀ p ∈ P , ∀ω ∈ Ω :
T∑
t=1

Prt(Y|ω, p)
µt(ω)πt

µ(ω)
= Pr(Y|ω, p).

Theorem 3. Given a prior belief µ and a finite and non-empty set of prices P , the

behavior is rationalized by an aggregate PS model if and only if it is rationalized by

a costly learning model and Pr(Y|ω, p) and Pr(Y|ω, p) are both weakly decreasing in

p.

Proof. See Appendix 1.

Theorem 3 says that the behavior can always be rationalized with heterogenous

DMs that all behave in line with a PS model if and only if when price increases

the probability of selecting option Y weakly decreases in both states. Using Bayes’

Rule, it is easy to show that such behavior can violate the predictions of Theorem

2. Further, one can visually see the difference in predicted behavior when PS DMs

are aggregated by comparing figures 4 and 5 in the Online Appendix. As a result,

aggregating over DMs that behave in line with a PS model can produce behavior that

cannot be rationalized by a PS model. Further, aggregating over PS DMs produces

more specific predictions than the general model of costly learning introduced in

Section 2.1, as can be seen by comparing figures 3 and 5 in the Online Appendix.
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3 The Experiment

In this paper’s experiment, whether or not a subject chooses to learn in a deci-

sion problem is observed, which is not typical in the literature on rational inattention.

This added detail is quite useful as the choice to acquire more information results in

a binary outcome, and using it for analysis with Corollary 1 does not require the

estimation of probability, a continuous variable.

In the experiment, which was completed by 243 undergraduate students from

the University of Toronto, each subject faced 92 rounds of decision problems in

which they chose between a safe option X and an uncertain option Y, and, if they

desired, they could also choose to ‘get more information’ (GMI) about the payoff from

option Y before selecting an option.

In each of these decision problems the payoff from option X is always a p ∈

{0.25, 0.5}, which is clearly displayed to the subject. In the first 40 and last 40

decision problems p = 0.25, and in the middle 12 decision problems (decision problems

41 through 52) p = 0.5. The payoff of option Y is a u(ω) ∈ {0, 1}, which is not

displayed.

The payoffs of the options are measured in terms of percentage points. Subjects

pick options to try to gradually increase their chance of winning a monetary prize at

the end of the experiment.8 For example, if a subject always selects option Y, and in

50 decision rounds it has a payoff of 1, and the rest of the time it has a payoff of 0,

then they have a 50% chance of winning the prize when the experiment ends. The

prize the subject can win in the draw is either $20, $25, or $30, depending on the

subject’s treatment group.

In each decision problem the subject is presented with a big dot that is either

red or green, as is depicted in Figure 1. The big dot induces the belief of the subject

about the payoff from option Y. If the big dot is red there is a 1
4
chance that option

8In this experiment subjects are ‘paid’ with percentage points in a decision problem so that within
subject analysis can be conducted in an incentive compatible way. See the Online Appendix for a
discussion of incentive compatibility.
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Y is the better option (µ(ω) = 1
4
), and if the big dot is green there is a 3

4
chance

that option Y is the better option (µ(ω) = 3
4
). In each decision problem there is a 3

4

chance that the big dot is red, and a 1
4
chance that the big dot is green.

Figure 1: Option X, Option Y, or Get more information (GMI):

If a subject chooses to ‘get more information,’ (GMI) 100 small dots appear,

each of which is either red or green, as is depicted in FIgure 2. There are always 49 of

one color of small dot, and 51 of the other color.9 If 51 of the small dots are red, then

the payoff from option Y is 0, and if 51 of the small dots are green, then the payoff

from option Y is 1. Figure 1 and Figure 2 display an example of a decision problem

before and after the subject has chosen to GMI. In total, subjects only chose to GMI

in 9,233 of 22,356 decision problems, with substantial variation in how many times

different individuals chose to GMI.

Subjects participated on-line due to COVID-19.10 In addition to the decision

9Subjects are provided with this information in their training so that their uncertainty about the
returns to effort are minimized.

10The experiment was programmed using oTree (Chen, Schonger, & Wickens, 2016).
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Figure 2: After choosing ‘Get more information’:

problems discussed above, each subject was trained, completed a quiz, and went

through eight ‘rounds’ of practice problems to familiarize themselves with the interface

before the 92 rounds of decision problems. For a more detailed description of the

experiment, see the Online Appendix.

3.1 Discussion of Experiment Design: Connection to Theory

For the models studied in Section 2 to be appropriate in the decision environ-

ment of the experiment, experiment subjects need to use the big dot to correctly

determine the prior distribution over states in each round. In any experiment on

rational inattention, and in particular experiments where there are changes in the

desired “prior belief” of subjects, there is a danger that subjects do not properly in-

ternalize the “prior.” I use big colorful dots to convey the prior so that the prior is as

salient of a feature of the choice environment as possible. Further, as Figure 1 shows,

in each round the numeric information about the prior contained in the colorful big
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dot, and its implication for the expected value of option Y, is repeated next to the

choice options in the drop-down menu that subjects use to select alternatives, and

only two relatively simple priors are used throughout the experiment. In addition,

there are several quiz questions that all subjects face about the big dots (see, in par-

ticular, Figures 18 and 19, but also Figures 11 and 14, in the Online Appendix for

examples), and thus subjects that did well on the quiz seem to be able to convert

the big dots into a prior belief in the intended way. The robustness of data results to

quiz performance is addressed in Table 1 below. Subjects are also reminded in ever

round, above the button that takes them to the next screen, about the information

contained in the big dots (see Figure 20 in the Online Appendix).

As is typical in experiments on rational inattention, it is also assumed that sub-

jects know the value of the safe option. To aid the appropriateness of this assumption,

there are only two points within the 92 decision problems at which the value of the

safe option changes. Before each block of rounds with the same payoff for option X

subjects are made aware of the payoff and the fact that it would stay the same for a

certain number of rounds (see Figures 21 and 22 in the Online Appendix). Further,

as can be seen in Figure 1, the payoff from option X is displayed in two places in each

round.

In the theory models it is said a DM learns if their probability of selecting option

Y differs across the states of the world. In the experiment it is instead said that a

subject learns if they choose to “get more information” (GMI). This is done because

in the theory model it is assumed that choice probabilities are perfectly observed,

whereas in any real dataset (such as the one generated in this paper’s experiment) only

an estimate of choice probabilities can be obtained, and frequently the estimate relies

on relatively few observation. Choice probabilities not being statistically significantly

different is thus not a satisfactory indicator of whether or not learning occurred.

Reaction times can also be used as a proxy for the decision to learn, but this seems

to be a nosier indicator of the decision to learn as there is nothing stopping subjects
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from taking short “breaks” during an experiment to check the time, stretch, rub their

eyes, or look at their cellphones. I do, however, use reaction times to supplement the

analysis in Section 3.3, and consider the possibility that subjects sometimes made

mistakes when selecting if they wanted to GMI.

3.2 Aggregate Data

Because subjects sometimes do and sometimes do not learn (choose to GMI)

at at each pair of p and µ I observe in the experiment, data that is aggregated over

subjects rejects the predictions of Corollary 1 (see the next subsection for a more

detailed discussion), and thus the most flexible model of costly learning this paper

studies that only imposes Assumption 1 and Assumption 2, if the cost function for

information outcomes is assumed to be constant across rounds with the same prior

belief. This is not surprising since it is natural to think that subjects might have

changes in their cost function for information over the course of the experiment due to

factors such as fatigue. Though, as is discussed in the next subsection, incorporating

fatigue into a model of costly learning is not sufficient for rationalizing the information

decisions of many subjects.

If the data on the decision to GMI is ignored and only the state and price

dependant choice probabilities for option Y are considered then, fixing either prior

belief, aggregate demand changes in line with the predictions of both the representa-

tive DM version of the PS model and the heterogeneous DM version (Theorem 2 and

Theorem 3 respectively) as is shown by Figure 6 in the Online Appendix. Theorem

3 is still an important result, however, because it demonstrates that (i): aggregating

over heterogeneous PS DMs can produce behvior that rejects the representative DM

version of the PS model, and (ii): even if heterogeneous DMs are introduced the PS

model still produces narrower predictions than the most general costly learning model

introduced in Section 2.1 (see Theorem 1) and rules out that there is a state of the

world where the chance of the risky option being selected increases when its price
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does, which one can argue is normatively appealing.

3.3 Within Subject Heterogeneity: Fatigue and Novelty

Corollary 1 implies that, if the cost function for information outcomes is constant

across rounds with the same prior (as is assumed throughout this paragraph), if

µ(ω) = 1
4
a subject has more incentive to learn if the price is p = 0.25 compared

to p = 0.5. Corollary 1 thus implies that, in rounds with µ(ω) = 1
4
, if a subject

sometimes chooses GMI in rounds with p = 0.5 then they should choose GMI in

all rounds with p = 0.25. While if µ(ω) = 3
4
, Corollary 1 says a subject has more

incentive to learn if the price is p = 0.5. Corollary 1 thus implies that, in rounds with

µ(ω) = 3
4
, if a subject sometimes chooses GMI in rounds with p = 0.25 then they

should choose GMI in all rounds with p = 0.5. Table 1 shows that many subjects thus

violate the predictions of the most general model of costly learning that only imposes

Assumption 1 and Assumption 2, and that this conclusion is robust to concerns about

lack of understanding as it is true even for subjects that did quite well on the quiz

(rows 2, 3, and 4, of Table 1).

To help ensure that the violations of Corollary 1 are not being generated by

subjects either accidentally selecting or not selecting to GMI, Table 1 also conducts

some analysis that allows for some “mistakes” and additionally controls for quiz

performance (rows 5 through 8). Pervasive violations of Corollary 1 are still found

when some choice are explained away as “mistakes.” This is not surprising because

the experiment is designed so that these types of mistakes are unlikely. Subjects pick

if they do or do not want to GMI from a drop-down menu (see Figure 1), which then

displays their choice, and they must then subsequently hit a “Next” button to finalize

their decision that is quite some distance from the drop-down menu, below both the

big dot for the round and a paragraph that reminds them of the meaning of the big

dot (see Figure 20 in the Online Appendix).

One natural explanation for why the predictions of Corollary 1, and the very
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Table 1: Percent of subjects that violate Corollary 1

(violate the costly learning model that only imposes Assumptions 1 and 2)

Row: 1 If analysis ignores fatigue and “mistakes” 56%

2 And is restricted to subjects that got 5/10 or more on the quiz 55% (122/223)

3 And is restricted to subjects that got 7/10 or more on the quiz 54% (94/173)

4 And is restricted to subjects that got 9/10 or more on the quiz 49% (49/99)

5 If analysis allows for some “mistakes” 45%

6 And is restricted to subjects that got 5/10 or more on the quiz 46% (102/223)

7 And is restricted to subjects that got 7/10 or more on the quiz 46% (80/173)

8 And is restricted to subjects that got 9/10 or more on the quiz 46% (46/99)

9 If analysis allows for fatigue 37%

10 And is restricted to subjects that got 5/10 or more on the quiz 36% (81/223)

11 And is restricted to subjects that got 7/10 or more on the quiz 35% (60/173)

12 And is restricted to subjects that got 9/10 or more on the quiz 31% (31/99)

Row 1 indicates the percent of subjects that, when µ(ω) = 1
4 , sometimes choose to acquire infor-

mation (choose to GMI) if p = 0.5 but do not always choose GMI if p = 0.25, or, when µ(ω) = 3
4 ,

sometimes choose GMI if p = 0.25 but do not always choose GMI if p = 0.5. Rows 2, 3, and 4,
conduct the same exercise as row 1 but restrict attention to subjects that got quiz scores of at least
5, 7, and 9, out of 10 respectively. Row 5 conducts the same exercise as row 1 but a subject is only
considered to have not GMI at a pairing of µ and p if there are at least two instances of them not
choosing GMI at said pairing, and they are only considered to have GMI at a pairing of µ and p if
there is at least one round in which they chose GMI at said pairing and then took at least 10 seconds
to make a decision. Rows 6, 7, and 8, conduct the same exercise as row 5 but restrict attention
to subjects that got quiz scores of at least 5, 7, and 9, out of 10 respectively. Row 9 indicates
the percent of subjects that, in rounds with µ(ω) = 1

4 , chose not to GMI for p = 0.25 and then
subsequently (in a later round) chose to GMI for p = 0.5, or, in rounds with µ(ω) = 3

4 , chose not to
GMI for p = 0.5 and then subsequently chose to GMI for p = 0.25. Rows 10, 11, and 12, conduct
the same exercise as row 9 but restrict attention to subjects that got quiz scores of at least 5, 7, and
9, out of 10 respectively.

general model of costly learning it studies, are violated by so many subjects is that

subjects may fatigue over the course of the experiment and as a result choosing to

GMI may be less appealing as the experiment progresses. This can be modelled by

allowing Cµ to increase as a subject progresses through the decision problems. Let

Cr
µ denote the cost function of a subject when their belief is µ and they are facing

their rth decision problem. A subject’s cost function for information outcomes is

said to be consistent with fatigue if, given belief µ, and integer t > 0, ∀s ∈ S

with s ≤ s : Cr
µ(s, s) ≤ Cr+t

µ (s, s). As is also demonstrated in Table 1, allowing

for fatigue substantially reduces the percent of subjects that violate the very flexible
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model of costly learning introduced in Section 2.1, but many subjects still violate the

predictions of Corollary 1, and this result holds even in the subsets of subjects that

did best on the quiz.

It seems that fatigue is not sufficient for rationalizing the behavior of subjects,

at least in part, because subjects are more likely to learn in rounds that are novel

in the sense that they feature a price and or prior belief that differs from previous

rounds. Table 2 reports the results of 3 different Logit regressions on the probability

of subjects choosing to GMI in rounds.

Table 2: Logit regressions on probability of GMI
Constant −1.645 −1.676 −1.747

(0.050) (0.052) (0.054)

Round number −0.026 −0.025 −0.025
(0.001) (0.001) (0.001)

|p− µ(ω)| −2.957 −2.964 −3.033
(0.258) (0.258) (0.258)

Number of other rounds 0.073 0.073 0.073
the subject chose GMI in (0.001) (0.001) (0.001)

Dummy for µ(ω) = 3
4

0.737 0.698 0.649
(0.124) (0.126) (0.126)

Decision problem different 0.153 0.148 0.129
than 1 round before (0.047) (0.047) (0.047)

Decision problem different 0.096 0.072
than 2 rounds before (0.046) (0.047)

Decision problem different 0.224
than 3 rounds before (0.046)

A decision problem is said to be different than the decision problem a certain number of rounds
before if the price and or the belief differ across the rounds.

If the model fitted in the second last column in Table 2 is used to predict the

probability of a subject that has gone through half of the decision problems and chose
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to GMI in 26 of their other decision problems (26 is the median number of times to

GMI) choosing GMI in a round with p = µ(ω) = 0.25, then the decision problem

being the same as the previous two rounds (same price and prior as the previous two

rounds) results in a 23.6% chance of them choosing GMI whereas the decision problem

being different from the previous two rounds (different price and or prior from the

previous two rounds) results in a 28.2% chance of them choosing GMI. If, instead,

the model fitted in the last column in Table 2 is used to predict the probability of

a subject that has gone through half of the decision problems and chose to GMI in

26 of their other decision problems choosing GMI in a round with p = µ(ω) = 0.25,

then the decision problem being the same as the previous three rounds results in a

22.5% chance of them choosing GMI whereas the decision problem being different

from the previous three rounds results in a 30.8% chance of them choosing GMI.

Proportionally, both of these changes are large. This is surprising given how little

variation there is between different decision problems in the experiment. Further,

the coefficients on the round number in Table 2 is one indication of the fatigue that

subjects experience during the experiment.

The impacts of fatigue and the “novelty” of a decision problem that are demon-

strated in Table 2 suggest that even if behavior is aggregated across the decisions of

a single individual and not across multiple individuals, allowing for the cost function

for information to vary across decision problems, as is done in Section 2.3, seems like

a natural modelling decision.

4 Literature Review

Caplin and Dean (2015) and Lipnowski and Ravid (2023) are also interested

in determining if choice data can be rationalized with inattention. Caplin and Dean

(2015) provide two testable conditions that, given a belief and a utility function, are

satisfied if and only if the data can be rationalized with a costly learning model.
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So, given behavior s and payoffs for option Y u(ω) and u(ω), their result allows

one to test whether or not the behavior is rationalized by a costly learning model.

Lipnowski and Ravid (2023) complimentarily show that even if the cost of information

is well understood, predicting behavior is essentially impossible if the utility function

is unknown, but that structure can be imposed across choice problems. The results

from my paper also study a setting where the utility function is unknown, and provide

conditions that characterize the set of observed behaviors that can be rationalized by

a given costly learning model when appropriate payoffs are selected in the special case

of a price change, but, further, introduces heterogeneous learning costs.

There are a number of other papers that also experimentally test the impli-

cations of models of costly learning. The experiment in this paper is inspired by

the work of Dean and Neligh (2023), but in their paper they do not have a change

in parameters that is equivalent to the change in price that is the primary focus of

this paper, and do not observe the outcome of the subjects’ decision to ‘get more

information.’ Dewan and Neligh (2020) study a different set of costly learning tasks

experimentally, but again they do not observe the decision to ‘get more information,’

and do not have a change in parameters that is equivalent to a change in price. When

these papers change option values they primarily do so in a multiplicative fashion,

i.e. they do something analogous to multiplying p and u(ω) by a constant so incen-

tive to learn is unambiguously higher or unambiguously lower. Understanding how

inattention changes when price changes is important because changes in price are

so commonly observed in the real world, whereas changes in belief or a multiplica-

tive change in payoffs are more difficult to observe. Ambuehl (2017) and Ambuehl,

Ockenfels, and Stewart (2022) experimentally and theoretically explore environments

with changes in parameters that are equivalent to changes in price, but they do not

observe the decision to ‘get more information.’

There is a growing literature that demonstrates the importance of inattention

and choice mistakes in standard economic settings, even in ones where it seems acquir-
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ing information should be costless. Chetty, Looney, and Kroft (2009), for instance,

show that including sales tax in posted prices reduces demand, presumably because

consumers were underestimating sales tax when making purchasing decisions, and

Taubinsky and Rees-Jones (2018) actually show that in such situations accounting

for the heterogeneity of subjects’ under-reaction to taxes is crucial for accurately es-

timating the efficiency loss from taxation. Papers in recent years have demonstrated

the significance of inattention in a wide variety of fields such as finance (Huberman,

2001), labor search (Acharya & Wee, 2020), trade (Dasgupta & Mondria, 2018), and

voting behavior (Shue & Luttmer, 2009).

5 Conclusion

This paper uses a novel data enrichment to show that experiment subjects are

more likely to invest effort into learning about the value of options if simple choice

parameters, like price, differ from previous choice problems. This increase in effort

in ‘unfamiliar’ choice problems and fatigue mean that the behavior of many subjects

violate even the most flexible model of costly learning, one that only assumes that

not learning is costless and that randomizing over learning strategies has a cost equal

to the average of the learning strategies’ costs, if the cost for information is assumed

to be constant across choice problems with the same prior beliefs. This observation

motivates the introduction of heterogeneous decision makers into a standard and more

restrictive (posterior separable) model of costly learning to better fit the data.

It is shown that the introduction of heterogeneous decision makers into a pos-

terior separable model can rationalize choice behavior that cannot be rationalized by

a representative decision maker version of the posterior separable model. However,

introducing heterogeneous decision makers into a posterior separable model still pro-

vides more precise predictions than the most general model of costly learning that is

studied.
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Further, it is argued that variation in the cost function for information, which

there is evidence of in the experiment, explains violations of the predictions of the

posterior separable model that have been identified by other papers. This is true

because fatigue over the course of an experiment could cause subjects to stop learning

and simply pick an option that is best at their prior belief, which can create behavioral

patterns that contradict the posterior separable model even though the posterior

separable model has a number of compelling foundations and is the standard in the

field of rational inattention.

Appendix 1: Proof of Theorems

Proof of Theorem 1. I begin with necessity of each point. (i): if ∃p ∈ P with

Pr(Y|ω, p) > Pr(Y|ω, p), then behavior is not rationalized because the DM would

have achieved a strictly higher gain in payoff at p by choosing either (depending on

the value of u(ω) relative to p) s = (Pr(Y|ω, p), Pr(Y|ω, p)) or s = (1, 1)).

(ii) : Suppose not, so p1 < p2 and: Pr(Y|p1) < Pr(Y|p2). But I have a contra-

diction again since if s(p1) is optimal at p1 then it provides a weakly higher gain in

payoff at p1 than s(p2) does, and, when price increases to p2 the decrease in gain in

payoff from s(p1) is strictly smaller than the decrease in gain in payoff from s(p2):

(p2 − p1)Pr(Y|p1) < (p2 − p1)Pr(Y|p2).

(iii): Again, I proceed with a proof by contradiction. Suppose ∃p1 ∈ P such

that: Pr(Y|ω, p1) = Pr(Y|ω, p1) ∈ (0, 1), and ∃p2 ∈ P\p1 such that Pr(Y|p2) ∈

(0, 1). Notice that optimality of the DM’s behavior at p1 implies s = (0, 0) and

s = (1, 1) are both optimal when price is p1 since all information outcomes s = (x, x)

have zero cost for x ∈ [0, 1]. If p2 < p1, then I have a contradiction because the

DM could optimally pick s = (1, 1) at p1, so Pr(Y|p1) = 1, which combined with

(ii) implies the DM is not behaving optimally at p2. If p2 > p1, then I have a

contradiction because the DM could optimally pick s = (0, 0) at p1, so Pr(Y|p1) = 0,
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which combined with (ii) implies the DM is not behaving optimally at p2.

To show (i), (ii), and (iii) are together sufficient I assume they are all satisfied

and order the prices in P = {p1, p2, . . . , pn}, so p1 < p2 < · · · < pn. Further, I can

assume that there is a price in P where the DM learns, because if not I can easily

rationalize the behavior by defining Cµ for s < s using a steep enough plane through

the diagonal of S (points (x, x) with x ∈ [0, 1]). (iii) thus tells me that there is not

behavior at a price pi ∈ P with s(pi) = (x, x) and x ∈ (0, 1). It is further without loss

to assume that s(p1) = (1, 1) and s(pn) = (0, 0), since if this is not the case I can add

prices to P , and data to the behavior, so that this is the case, and then rationalizing

the richer dataset rationalizes the original dataset. There is then a highest p ∈ P

such that Pr(Y|p) = 1, denote it ph, and a lowest p ∈ P such that Pr(Y|p) = 0,

denote it pl. Notice ph < pl. Pick a mean m = ph, which is a reference point for

conducting mean preserving spreads on u(ω) and u(ω) and is shifted at the end of the

argument. Then pick u(ω) < p1 and u(ω) > pn such that µ(ω)u(ω) + µ(ω)u(ω) = m.

Remember, for all x ∈ [0, 1] : Cµ(x, x) = 0. I now begin recursively assigning costs

to the other information outcomes. Define:

Cµ(s(pl−1)) = µ(ω)
(
s(pl−1)(u(ω)− pl)

)
+ µ(ω)

(
s(pl−1)(u(ω)− pl)

)
= s(pl−1)(m− pl) + µ(ω)

(
s(pl−1)− s(pl−1)

)
(u(ω)− pl).

This means the DM is indifferent between s(pl−1) and s(pl) when price is pl, and thus

strictly prefers s(pl−1) to s(pl) when price is pl−1 because when price decreases the gain

in payoff from s(pl−1) strictly increases since there is a strictly positive probability of

the DM selecting option Y when they choose s(pl−1) (by construction) while the gain

in payoff from s(pl) is zero (by construction). If this Cµ(s(pl−1)) is strictly positive

I continue, and if it is not I do a mean preserving spread on u(ω) and u(ω) so it is.

26



Next, if l − 2 > h, I let:

Cµ(s(pl−2)) = s(pl−2)(m− pl−1) + µ(ω)
(
s(pl−2)− s(pl−2)

)
(u(ω)− pl−1)

−s(pl−1)(m− pl−1)− µ(ω)
(
s(pl−1)− s(pl−1)

)
(u(ω)− pl−1) + Cµ(s(pl−1)).

This means the DM is indifferent between s(pl−2) and s(pl−1) when price is pl−1,

and thus weakly prefers s(pl−2) to s(pl−1) when price is pl−2. If this Cµ(s(pl−2))

is strictly positive I continue, if it is not I do a mean preserving spread on u(ω)

and u(ω) (updating Cµ(s(pl−1)) accordingly) so Cµ(s(pl−2)) is strictly positive, which

works since the value of −µ(ω)
(
s(pl−1)−s(pl−1)

)
(u(ω)−pl−1)+Cµ(s(pl−1)) does not

change. I continue in this fashion until I have set Cµ(s(ph+1)). If I keep the mean

m the same (equal to ph), then the DM strictly prefers s(ph+1) to s(ph) when price

is ph+1, since they prefer s(ph+1) to s(pl), which they strictly prefer to s(ph). I now

increase u(ω) and u(ω) by the same amount so that the mean m increases, and all

Cµ(s(pi)) > 0 so that the equations I used to define costs are still satisfied, until

the DM is indifferent between s(ph+1) to s(ph) when price is ph+1. As a result, the

DM strictly prefers s(ph) to s(ph+1) when price is ph since there is a strictly higher

unconditional chance the DM selects option Y when they pick s(ph) compared to

s(ph+1) by construction.

At each price pi I assigned a cost to the information outcome so that the DM is

indifferent at pi between s(pi), and s(pi−1). This implies, out of the set of information

outcomes I observe in the behavior, the DM is selecting their strategy optimally

at each price, since as price decreases the gain in payoff from a strategy increase

by the unconditional probability of choosing option Y, and as price decreases the

unconditional probability of selecting option Y increases.

Now, I assign an arbitrarily high value to Cµ(0, 1) (so that (0, 1) is strictly

worse than s(p) for all p ∈ P), if I have not already assigned a value to it, and then

define Cµ on s ∈ S such that s < s to be the the maximal convex function that is
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equal to the Cµ(s(p)) I assigned for all p ∈ P .

Why is this possible? Is it instead possible I assigned a Cµ(s(pi)) that was

strictly above the relevant convex combination of other Cµ(s(pj))’s I assigned? This

is not possible, as I can show with a quick proof by contradiction. Assume there is a set

of prices P̃ = {pm, . . . pk} ⊆ P , and a price pi ∈ P such that there are positive weights

αj that sum to one such that αms(pm) + · · ·+ αks(pk) = s(pi), but at the same time

αmCµ(s(pm))+· · ·+αkCµ(s(pk)) < Cµ(s(pi)). Since s(u(ω)−p)µ(ω)+s(u(ω)−p)µ(ω)

is linear in the probabilities s and s, this implies when price is pi the DM strictly

prefers randomizing over their strategies from the P̃ = {pm, . . . pk} prices compared

to selecting s(pi), but this implies there is a pj ∈ P̃ = {pm, . . . pk} such that the DM

strictly prefers s(pj) to s(pi) at pi, which was ruled out by my recursive definition for

the costs of information outcomes.

Similarly, at each pi the information outcome of the DM is optimal given choice

from the entire set of S since at each s with s ≤ s the cost is a convex combination of

costs from information outcomes used for prices in P and the corner (0, 1), and if the

DM would prefer to switch to a different s at pi, then they strictly prefer randomizing

over the set of information outcomes used to generate the cost of s, and again one of

the information outcomes used to generate the cost at s would then have been strictly

preferred at pi, and my recursive definition for the cost of information outcomes (and

choice of arbitrarily high Cµ(0, 1)) rules this out. ■

Proof of Theorem 2. I assume there is a p ∈ P such that s(p) < s(p), otherwise

the necessary conditions are trivially established, and sufficiency is easy to establish

by making learning costly enough (since belief is fixed).

When the DM pays for information according to a measure of informedness

(weakly convex c), the way for them to maximize their expected gain in payoff is to

maximize the weighted average over option specific net gains in utility V (Y|p, ·) and

V (X|·), defined in the next paragraph. Each option specific net gain in utility takes

into account the expected gain in payoff of the relevant option, X or Y, given the
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DM’s posterior, and the cost of the posterior reached by the DM when they choose

said option, where the posterior can be described by the resultant probability of ω

being realized, Pr(ω|Y, p) or Pr(ω|X, p) respectively.

If the DM does no learning they choose X or Y depending on the expected gain

in payoff from selecting option Y, m − p = µ(ω)u(ω) + µ(ω)u(ω) − p, and which

is larger as a result, V (Y|p, µ(ω)) = m − p or V (X|µ(ω)) = 0. If the DM does

some learning, then when they choose X their gain in payoff is V (X|Pr(ω|X, p)) =

−c(Pr(ω|X, p)) + c(µ(ω)), and when they select Y their gain in payoff is

V (Y|p, Pr(ω|Y, p)) = Pr(ω|Y, p)(u(ω)− p) + (1− Pr(ω|Y, p))(u(ω)− p)

−c(Pr(ω|Y, p)) + c(µ(ω)). Both V (Y|p, ·) and V (X|·) are weakly concave functions

since c is weakly convex. The DM is maximizing the weighted average of the two.

Notice that in any optimal solution, if the DM is learning, Pr(ω|X, p) < µ(ω) <

Pr(ω|Y, p). As a result, to find the optimal solution of the DM I must find the cord

from the top of V (X|·) on the left of µ(ω) to the top of V (Y|p, ·) on the right, so that

I have a weakly concave closure.

When p increases, either the DM stops learning, which means the concave clo-

sure at µ(ω) is V (X|µ(ω)), or the DM continues to learn, in which case, V (Y|p, ·)

shifts downward at every point by the change in price, and the point where the cord

that creates the weakly concave closure hits V (Y|p, ·) and V (X|·) must then both

weakly move to the right, which means Pr(ω|X, p) and Pr(ω|Y, p) are both weakly

increasing, which establishes necessity.

Next I show sufficiency by constructing a weakly convex c function that gener-

ates the observed behavior. It is without loss to assume P = {p1, p2, . . . , pn}, with

p1 < · · · < pn, and Pr(Y|Ω, P) are such that n ≥ 4 (in the example graphs, n = 6),

with Pr(Y|p1) = 1, Pr(Y|pn) = 0, and Pr(Y|pi) ∈ (0, 1) for pi ∈ P\{p1, pn}, since if

this is not the case I can generate such a dataset by adding more prices with behav-

ior that satisfy the conditions since rationalizing this richer dataset rationalizes the

original dataset. I draw the graphs step by step and the different components are
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going to help me pick u(ω) and u(ω), and tell me a suitable c. The horizontal axis

goes from zero to one, I call the horizontal coordinate z since X is already being used.

The vertical axis may take positive and negative values, I call this coordinate height,

whether it be positive or negative, since Y is being used.

First (graph a): I draw a line segment from z = Pr(ω|X, pn−1) and a positive

height, to z=1 and a negative height, so that when z = µ(ω), the height is 0, and

so that the height at Pr(ω|Y, pn−1) is −w such that pn−1 − p2 − w >0. The part

of the segment between z = Pr(ω|X, pn−1) and a z = µ(ω) I make red, the segment

between z = Pr(ω|Y, pn−2) and z = 1 I make blue, and the rest I erase. Second

(graph b): I take the blue segment and increase the height by pn−1 − pn−2, then I

draw a new line segment from the blue line at z = Pr(ω|Y, pn−2), through the red

segment at z = Pr(ω|X, pn−1) and continue on to z = Pr(ω|X, pn−2). The part of

the new segment between z = Pr(ω|X, pn−1) and z = Pr(ω|X, pn−2) I make red, the

part of the new segment between z = Pr(ω|Y, pn−2) and z = Pr(ω|Y, pn−3) I make

blue, and the rest I erase. Third (graph c): I take the blue segment and increase

the height by pn−2 − pn−3, then I draw a new line segment from the blue line at

z = Pr(ω|Y, pn−3), through the red segment at z = Pr(ω|X, pn−2) and continue on

to z = Pr(ω|X, pn−3). The part of the new segment between z = Pr(ω|X, pn−2) and

z = Pr(ω|X, pn−3) I make red, the part of the new segment between z = Pr(ω|Y, pn−3)

and z = Pr(ω|Y, pn−4) I make blue, and the rest I erase.11 Eventually (graph d), after

continuing in the above fashion, I take the blue segment and increase the height by

p3−p2, then I draw a new line segment from the blue line at z = Pr(ω|Y, p2), through

the red segment at z = Pr(ω|X, p3) and continue on to z = 0. The part of the new

segment between z = Pr(ω|X, p3) and z = 0 I make red, the part of the new segment

between z = µ(ω) and z = Pr(ω|Y, p2) I make blue, and the rest I erase.

The red line segments I take to be −c(z) + c(µ(ω)) for z ∈ [0, µ(ω)]. Next, let

b(z) denote the height of the blue segment for z ∈ [µ(ω), 1] (graph d). b(µ(ω)) > 0

11In the graphs Pr(ω|X, pn−2) = Pr(ω|X, pn−3), which is meant to provide some insight into what
happens when Pr(ω|X, p) or Pr(ω|Y, p) are only weakly decreasing in p.
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because either the slope of the blue segments is negative (where it is defined), in

which case b(µ(ω)) is more than b(Pr(ω|Y, pn−1)), which is strictly positive based

on how I chose −w at the beginning, or the slope of the blue segments is positive

or zero immediately to the right of z = µ(ω), in which case b(µ(ω)) is greater or

equal to the height of the red segments at Pr(ω|X, pn−1), which is strictly positive by

construction. Further, b(µ(ω))− pn−1 + p2 < 0, again based on how I picked w. Next

I pick the mean quality to be m = p2 + b(µ(ω)) ∈ (p2, pn−1) so that when p = m

the DM is indifferent between choosing X without learning and choosing Y without

learning. Next, I pick u(ω) and u(ω) so that µ(ω)u(ω) + µ(ω)u(ω) = m, and so that

(to help ensure convexity of c):

u(ω)− u(ω) +
c(µ(ω))− c(Pr(ω|X, pn−1)

µ(ω)− Pr(ω|X, pn−1)
≥ b(Pr(ω|Y, p2))− b(µ(ω))

Pr(ω|Y, p2)− µ(ω)
.

Next, for z ∈ [µ(ω), 1] I let −c(z)+c(µ(ω)) = b(z)−b(µ(ω))−(z−µ(ω))(u(ω)−u(ω)).

Finally, I fix c(µ(ω)) so that minz∈[0, 1] c(z) = 0. ■

Proof of Theorem 3. I begin with a helpful lemma.

Lemma 1. Given prices p and p > p, payoffs for option Y u(ω) and u(ω) such that
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u(ω) ≤ p and u(ω) ≥ p, and a type t with a prior belief such that µt(ω) ∈ (0, 1)

and µt(ω) ≡ 1− µt(ω), I can create a measure of informedness ct : [0, 1] → R+ such

that DMs of type t are indifferent between doing no learning (s = s) and perfectly

observing the payoff from option Y (s = 0, s = 1) when the price is p ∈ {p, p},

strictly prefers perfectly observing the payoff from option Y over all other learning

strategies (any other probabilities of selecting Y in each state) when the price is

p ∈ (p, p), and strictly prefers doing no learning over all other learning strategies

when p /∈ [p, p], if the payoffs from option Y are a mean preserving spread of the

prices: µt(ω)u(ω) + µt(ω)u(ω) = µt(ω)p+ µt(ω)p.

Proof of Lemma 1. In the fashion of the proof of Theorem 2, I construct the

functions V (X|z) in red on the left of µt(ω) and V (Y|p, z) in blue on the right of

µt(ω) (graphs below). When p = µt(ω)u(ω) + µt(ω)u(ω) = Et[u(ω)], these functions

must both be equal to zero. So, I am going to draw V (X|z) and V (Y|Et[u(ω)], z) as

line segments on either side of µt(ω), so that V (X|µt(ω)) = V (Y|Et[u(ω)], µt(ω)) = 0

(graph e), and so that they satisfy two other properties. (i): First, when the blue line

segment is shifted up by Et[u(ω)]−p, it must be that if I were to extend the blue line

segment so that it reaches z = 0, it hits the red line segment at z = 0 (graph f), so
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that when p = p the DM is indifferent between learning nothing and everything, and

at all lower prices they strictly prefer learning nothing. (ii): Second, it must be that

when the blue line segment is shifted down by p− Et[u(ω)], it must be that if I were

to extend the red line segment so that it reaches z = 1, it hits the blue line segment at

z = 1 (graph g), so that when p = p the DM is indifferent between learning nothing

and everything, and at all higher prices the DM strictly prefers learning nothing.

Together, these properties imply that the slope of the blue line segment is strictly

greater than the slope of the red line segment, and the DM strictly prefers learning

everything over all other learning strategies when p ∈ (p, p).

z

V

−b V (X|z)

V (Y|Et[u(ω)], z)

0
1

µt(ω)

w

Graph (e) Graph (f) Graph (g)
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1

µt(ω)

z

V

V (X|z)

V (Y|p, z)

1

µt(ω)

How do I find line segments that satisfy the two properties? I select the height

of the red segment at zero (−b in graph e) and the blue segment at one (w in graph

e) so that:

(i) :
w

µt(ω)
= b+ w + (Et[u(ω)]− p), (ii) :

b

µt(ω)
= b+ w − (p− Et[u(ω)])

⇔ b =
µt(ω)w

µt(ω)
− (Et[u(ω)]− p), b =

µt(ω)w

µt(ω)
− µt(ω)

µt(ω)
(p− Et[u(ω)]).

But: Et[u(ω)] = µt(ω)p+ µt(ω)p ⇒ −(Et[u(ω)]− p) = −µt(ω)

µt(ω)
(p− Et[u(ω)]),

so: b =
µt(ω)w

µt(ω)
− (Et[u(ω)]− p) ⇔ b =

µt(ω)w

µt(ω)
− µt(ω)

µt(ω)
(p− Et[u(ω)]).

Thus, given any b, I simply make w = µt(ω)
µt(ω)

b+ (p− Et[u(ω)]).
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For z ∈ [0, µt(ω)], I let −c(z) + c(µt(ω)) = V (X|z). For z ∈ [µt(ω), 1], I let

−c(z) + c(µt(ω)) = V (Y|Et[u(ω)], z)− (z − µt(ω))(u(ω)− u(ω)). Finally, fix c(µ(ω))

so that minz∈[0, 1] c(z) = 0. It is easy to show that, given how I picked w based on b,

this procedure produces a weakly convex c. ■

I now return to the proof of Theorem 3. I begin by showing that for any

type t it must be that Prt(Y|ω, p) and Prt(Y|ω, p) are weakly decreasing in p. If

Prt(Y|ω, p) = Prt(Y|ω, p) = 1 clearly both need to decrease. If Prt(Y|ω, p) <

Prt(Y|ω, p) ≤ 1, then if Prt(Y|ω, p) increases, Theorem 1 requires Prt(Y|ω, p) de-

creases, and Bayes’ Rule tells us:

Prt(ω|Y, p) =
Prt(Y|ω, p)µt(ω)

Prt(Y|ω, p)µt(ω) + Prt(Y|ω, p)µt(ω)
=

1

1 +
Prt(Y|ω, p)µt(ω)

Prt(Y|ω, p)µt(ω)

,

so Prt(ω|Y, p) decreases, which violates Theorem 2. If Prt(Y|ω, p) ≤

Prt(Y|ω, p) < 1, and Prt(Y|ω, p) increases, then Theorem 1 tells me Prt(Y|ω, p)

decreases, and Bayes’ Rule tells us:

Prt(ω|X, p) =
Prt(X|ω, p)µt(ω)

Prt(X|ω, p)µt(ω) + Prt(X|ω, p)µt(ω)
=

1

1 +
Prt(X|ω, p)µt(ω)

Prt(X|ω, p)µt(ω)

,

so Prt(ω|X, p) decreases, which violates Theorem 2. As a result Pr(Y|ω, p) and

Pr(Y|ω, p) both being weakly decreasing is necessary for Pr(Y|Ω, P) to be rational-

ized by an aggregate PS model.

Sufficiency is the challenge. I assume there is a p ∈ P such that s(p) < s(p),

otherwise sufficiency is easy to establish by making learning costly enough (since

belief is fixed). It is without loss to assume P = {p1, p2, . . . , pn}, with p1 < · · · < pn.

Notice that it is also without loss to assume that between any two adjacent prices pi

and pi+1, if Pr(Y|p) decreases, then only one of Pr(Y|ω, p) and Pr(Y|ω, p) decreases,

since otherwise I can always enrich Pr(Y|Ω, P) in a way so that behavior is still
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rationalized by a costly learning model, and so that this is true. I can then rationalize

the richer dataset, which in turn rationalizes the less rich dataset. Similarly, I can

assume without loss that Pr(Y|p1) = 1 and Pr(Y|pn) = 0, and that there are at

least two pairs of prices between which Pr(Y|ω, p) strictly decreases. Notice that the

change between p1 and p2 is then a reduction in Pr(Y|ω, p), while the change between

pn−1 and pn is then a reduction in Pr(Y|ω, p).

I am now going to start pairing reductions in Pr(Y|ω, p)µ(ω) with reductions

in Pr(Y|ω, p)µ(ω). The goal is to rationalize each pair with a type using Lemma 1,

but I have to be careful about how I construct the pairs, and I start off with an initial

pairing that intentionally fails in an eventually fixable way. Initially (henceforth

initial pairing), pair reductions δω in Pr(Y|ω, p)µ(ω) between two adjacent prices,

with reductions δω in Pr(Y|ω, p)µ(ω) between higher adjacent prices that are not

pn−1 and pn (none of the reduction in Pr(Y|ω, p)µ(ω) between pn−1 and pn is paired

in the initial pairing), so that the following four properties are satisfied. First, all

reduction in Pr(Y|ω, p) is paired, all reduction in Pr(Y|ω, p) except that between

pn−1 and pn is paired. Second, each pairing has
δω

µ(ω)
> δω

µ(ω)
. Third, the pair that

has the strictly lowest δω/(δω + δω) is a pairing (denoted (δ̃ω, δ̃ω)) between reduction

in Pr(Y|ω, p)µ(ω) between p1 and p2, and reduction in Pr(Y|ω, p)µ(ω) between the

lowest pair of prices that have a reduction in Pr(Y|ω, p)µ(ω), call them pj, pj+1.

Fourth, if I pick u(ω) = pn, and pick u(ω) < p1 so that:

δ̃ωu(ω) + δ̃ωu(ω)

δ̃ω + δ̃ω
=

δ̃ωp1 + δ̃ωpj

δ̃ω + δ̃ω
, (1)

(µ(ω)− δ̃ω)u(ω) + (µ(ω)− δ̃ω)u(ω)

(µ(ω)− δ̃ω) + (µ(ω)− δ̃ω)
<

(µ(ω)− δ̃ω)p2 + (µ(ω)− δ̃ω)pj+1

(µ(ω)− δ̃ω) + (µ(ω)− δ̃ω)
. (2)

Why is it possible to satisfy all four properties simultaneously? The second

property is possible because of the first property, and ensures that a reduction in

Pr(Y|ω, p) is always paired with a smaller reduction in Pr(Y|ω, p). Then, when I

35



pick the pair with the strictly lowest δω/(δω + δω) in the third property, I can make

sure the reduction in Pr(Y|ω, p) is paired with an arbitrarily close in size reduction

in Pr(Y|ω, p), which makes the two values:

δ̃ωu(ω) + δ̃ωu(ω)

δ̃ω + δ̃ω
and

(µ(ω)− δ̃ω)u(ω) + (µ(ω)− δ̃ω)u(ω)

(µ(ω)− δ̃ω) + (µ(ω)− δ̃ω)

arbitrarily close together, which ensures the fourth property can be satisfied since

satisfying (1) and continuity then implies (2).

The behavior of the (δ̃ω, δ̃ω) pairing can be rationalized by a single type accord-

ing to Lemma 1, and this continues to be true as long as I spread u(ω) and u(ω) away

from each other so (1) is satisfied. Further, the second property then implies such

spreads that maintain the equality in (1) increase the meanm = µ(ω)u(ω)+µ(ω)u(ω).

Then, looking at how the ratios change when the weights change for reductions δω

between pi and pi+1 and δω between pk and pk+1 with i+ 1 > 1 and k + 1 > j:

∂
δωu(ω) + δωu(ω)

δω + δω
∂δω

=
δω(u(ω)− u(ω))

(δω + δω)2
<

δω(pi+1 − pk+1)

(δω + δω)2
=

∂
δωpi+1 + δωpk+1

δω + δω
∂δω

, (3)

so
δωu(ω) + δωu(ω)

δω + δω
<

δωpi+1 + δωpk+1

δω + δω
.

What I do next is I reduce each δω to δ̂ω (leaving the excess unpaired), so:

δ̂ωu(ω) + δωu(ω)

δ̂ω + δω
=

δ̂ωpi+1 + δωpk+1

δ̂ω + δω
≥

δ̂ωp2 + δωpj+1

δ̂ω + δω
>

δ̂ωp1 + δωpj

δ̂ω + δω
. (4)

Then (3) tells me there is a unique δ̂ω that satisfies the equality in (4). Further, the

inequalities from (4) and (1) and (2) imply that for each resultant pairing:

δ̂ω

δ̂ω + δω
<

δ̃ω

δ̃ω + δ̃ω
, and

δ̂ω

δ̂ω + δω
<

µ(ω)− δ̃ω

(µ(ω)− δ̃ω) + (µ(ω)− δ̃ω)
. (5)
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So (4), (5) and (2) say:
δ̂ωu(ω) + δωu(ω)

δ̂ω + δω
=

δ̂ωpi+1 + δωpk+1

δ̂ω + δω
≥

δ̂ωp2 + δωpj+1

δ̂ω + δω

>
(µ(ω)− δ̃ω)p2 + (µ(ω)− δ̃ω)pj+1

(µ(ω)− δ̃ω) + (µ(ω)− δ̃ω)
>

(µ(ω)− δ̃ω)u(ω) + (µ(ω)− δ̃ω)u(ω)

(µ(ω)− δ̃ω) + (µ(ω)− δ̃ω)
,

which means that each pair (δ̂ω, δω), not including (δ̃ω, δ̃ω), has a higher mean than

the mean that is left after removing only (δ̃ω, δ̃ω), so the pairings with δ̂ω’s have

reduced the mean of what is left over.

But, I need to match the reductions in Pr(Y|ω, p)µ(ω) that are now unpaired

with the reduction in Pr(Y|ω, p)µ(ω) between pn−1 and pn. So, beginning with the

lowest pair of prices with unmatched change and working my way up I take all of

the unmatched reduction in Pr(Y|ω, p)µ(ω) between pm and pm+1, denoted δ̄ω, and

match it with enough reduction in Pr(Y|ω, p)µ(ω) from between pn−1 and pn, denoted

δ̄ω, so that:
δ̄ωu(ω) + δ̄ωu(ω)

δ̄ω + δ̄ω
=

δ̄ωpm+1 + δ̄ωpn

δ̄ω + δ̄ω
,

∂
δωu(ω) + δωu(ω)

δω + δω
∂δω

=
δω(u(ω)− u(ω))

(δω + δω)2
>

δω(pn − pm+1)

(δω + δω)2
=

∂
δωpm+1 + δωpn

δω + δω
∂δω

, (6)

so there is a unique δ̄ω for each δ̄ω. But,

δ̄ωpm+1 + δ̄ωpn

δ̄ω + δ̄ω
>

δ̄ωp2 + δ̄ωpj+1

δ̄ω + δ̄ω
>

(µ(ω)− δ̃ω)p2 + (µ(ω)− δ̃ω)pj+1

(µ(ω)− δ̃ω) + (µ(ω)− δ̃ω)

>
(µ(ω)− δ̃ω)u(ω) + (µ(ω)− δ̃ω)u(ω)

(µ(ω)− δ̃ω) + (µ(ω)− δ̃ω)
,

where the second inequality is true due to (3) or (6), and third is due to (2), which

in a fashion similar to how (4) implies (5), implies:

δ̄ω

δ̄ω + δ̄ω
<

δ̃ω

δ̃ω + δ̃ω
, and

δ̄ω

δ̄ω + δ̄ω
<

(µ(ω)− δ̃ω)

(µ(ω)− δ̃ω) + (µ(ω)− δ̃ω)
. (7)
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This all means I am doomed to failure since the mean required by each remaining

pair is strictly higher than the mean of the unmatched reductions I have left and I

run out of reduction in Pr(Y|ω, p)µ(ω) from between pn−1 and pn before I have paired

all the unpaired reduction in Pr(Y|ω, p)µ(ω).

How do I do better? I return to the initial pairing, but increase u(ω) and

decrease u(ω) so that (1) is satisfied, which increases the mean of what is left over

after the (δ̃ω, δ̃ω) pairing (eventually (2) is violated as a result, but I do not need (2)

to be satisfied by the final solution, and its eventual violation makes this strategy

work). Then, (5) tells me that the δ̂ω I had previously picked to satisfy the equality

in (4) were too low, so this iteration I reduce each δω less (but still reduce given how

I picked (δ̃ω, δ̃ω) to satisfy the second property), which means I have less unmatched

reduction in Pr(Y|ω, p)µ(ω) to pair after producing the δ̂ω’s. Further, for any amount

of unmatched Pr(Y|ω, p)µ(ω), the previous amount of reduction in Pr(Y|ω, p)µ(ω)

from between pn−1 and pn I would have matched it with is too large given (7), since

I spread u(ω) and u(ω) but (1) is satisfied, so the unmatched Pr(Y|ω, p)µ(ω) goes

farther, and eventually this strategy works. ■
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Hébert, B., & Woodford, M. (2023). Rational inattention when decisions take time.

Journal of Economic Theory , 208 , 105612.

Huberman, G. (2001). Familiarity breeds investment. The Review of Financial

Studies , 14 (3), 659–680.

Lipnowski, E., & Ravid, D. (2023). Predicting choice from information costs. arXiv

preprint arXiv:2205.10434 .
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Matějka, F., & McKay, A. (2015). Rational inattention to discrete choices: A

new foundation for the multinomial logit model. American Economic Review ,

105 (1), 272–98.

Mensch, J. (2018). Cardinal representations of information. Available at SSRN

3148954 .

Morris, S., & Strack, P. (2019). The wald problem and the relation of sequential

sampling and ex-ante information costs.

Pomatto, L., Strack, P., & Tamuz, O. (2023). The cost of information: The case of

constant marginal costs. American Economic Review , 113 (5), 1360–1393.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System

Technical Journal , 27 (3), 379–423.

Shue, K., & Luttmer, E. F. (2009). Who misvotes? the effect of differential cognition

40



costs on election outcomes. American Economic Journal: Economic Policy ,

1 (1), 229–57.

Sims, C. A. (2003). Implications of rational inattention. Journal of monetary Eco-

nomics , 50 (3), 665–690.

Singular “they”. (n.d.). Retrieved 2020-11-17, from https://apastyle.apa.org/

style-grammar-guidelines/grammar/singular-they

Taubinsky, D., & Rees-Jones, A. (2018). Attention variation and welfare: theory

and evidence from a tax salience experiment. The Review of Economic Studies ,

85 (4), 2462–2496.

Walker-Jones, D. (2024, May). Heterogeneous costs and the decision to learn.

41

https://apastyle.apa.org/style-grammar-guidelines/grammar/singular-they
https://apastyle.apa.org/style-grammar-guidelines/grammar/singular-they


Online Appendix

There is some repetition of Section 3 from Walker-Jones (2024) to make things

more clear, but the explanation of the experiment in this online appendix is not

complete, and is meant to complement the description in Section 3 of Walker-Jones

(2024).

Participants were recruited for the experiment using ORSEE (Greiner, 2015)

from the Toronto Experimental Economics Laboratory recruitment pool. Subjects

signed up ahead of time for a particular day, either the 21st, 22nd, 23rd, 28th, 29th,

or 30th of September 2020.12 Subjects were told ahead of time they would be sent

a link at 8 AM EDT, and would have until 8 PM EDT to finish the experiment.13

In total 270 undergraduate students from the University of Toronto attempted to

partake in the experiment, and 243 of them completed the experiment.14 I refer to

the 243 students that completed the experiment as the ‘subjects.’

Each subject began by consenting to participate in the experiment. They then

saw a welcome screen that explained that they were about to be trained and quizzed.

They were told: “Please read the following instructions carefully. Understanding

what is going on will help you earn more money. You will first be trained, and then

you will be quizzed, to make sure you understand how everything works. There will

be 10 questions in the quiz. You must answer each question correctly before you can

move on to the next question. When you complete the quiz you will earn the $5

12I had 24 subjects on the 21st, 39 on the 22nd, 48 on the 23rd, 43 on the 28th, 46 on the 29th,
and 70 on the 30th.

13On the 22nd the session was extended until 9 PM EDT because students experienced crashes.
Then on September 28th the Economic Department’s servers were unexpectedly down until almost
10 AM EDT, so students were given until 10 PM EDT to complete the experiment.

14There were 315 undergraduate students that signed up to receive a link for the experiment
but 45 of them did not use the link. This proportion is in line with the “turnout” rates of other
experiments run with the recruitment pool. A handful of students experienced one of two errors
on September 22nd. One seemed to be caused by a server problem, while the other was caused by
a missing image file. Four of the students that experienced errors did not want to re-start. Two
students started the experiment with less than 20 minutes left before their session finished and could
not finish as a result. This left 264 students, but some of them chose to drop out, as is explained
later, so 243 ended up completing the experiment.
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training payment. In addition, each quiz question you answer correctly on the first

try earns you another $0.5 training bonus payment, so you can earn up to $10 just

by doing well during the training.” I wanted to incentivize students to pay attention

during the training so that they understood the environment and their choices would

be indicative of their preferences. All payments were in Canadian dollars.

The training consisted of three pages, which are figures 7, 8, and 9, below. In the

second training page subjects were required to select ‘get more information’ (GMI)

so that they knew what happened if they did. If they did not, then they got an error

message asking them to do so. The 10 quiz questions can be seen at the end of this

appendix in figures 10 through 19. If a subject got a quiz question wrong the order

of the answers in the drop down menu randomly permuted so that subjects could not

just try them in order. The quiz verified that subjects understood the environment,

but also gave me another opportunity to train them. In the data I can see how many

times each subject attempted each question. I also know how long subjects spent on

each page. Among subjects the average time spent on the welcome page, training

pages, and quiz pages was 17.9 minutes, and the average quiz score was 7.6/10. So,

subjects in general put a lot of effort into understanding the environment, and were

quite successful in doing so.

After the quiz subjects faced 100 rounds of ‘investment decisions’ (the last 92

of which are the decision problems I study in the body of the paper). In each round

the subject selects one of two options, option X or option Y. In all 100 rounds the

DM selects from their options in a drop down menu, and the order of the options is

randomly generated in each round.

The subject earned probability points in each round. Subjects gradually in-

creased their collection of probability points so as to have a higher chance of winning

the draw at the end of the 100 rounds. If they won the draw they would receive

a monetary prize of either $20, $25, $30. The prize they would receive if they won

was determined by the subject’s treatment group, and was displayed to the subject
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throughout the training pages and rounds.15 In a round the smallest increase the

subject can get in their probability of winning the prize is zero percentage points,

and the largest increase is one percentage point. In each round option X is worth an

amount of percentage points strictly between 0 and 1, and option Y is worth 0 or 1

percentage points.

I paid subjects in probability points so I could attempt within subject analysis

in an incentive compatible way. The ideal when it comes to incentive compatibility is

that in each of the 100 rounds the subject chooses what they would have chosen if they

had only had to make a decision in that one round (Azrieli, Chambers, & Healy, 2018,

2020). In the setting of my experiment if I pay the subject money in each round then

their marginal value for money could decrease as the rounds progress (wealth effects).

Further, it would be difficult to separate this change in preferences from fatigue.

The standard solution is to use a “random incentive system” (RIS), and pay the DM

based on their decision in that round (Allais, 1953). In this paper’s experiment setting

this strategy is not incentive compatible. The DM needs to consider the cost of their

learning in the setting studied in this paper, and they cannot defer their learning until

they know which round is selected. If I increase the number of rounds they see, and

keep the monetary payments the same, their accuracy should go down. The benefit

(in expectation) from making a good selection in a round decreases while their cost

of learning stays the same. Paying subjects in probability points is mathematically

equivalent to RIS if subjects reduce compound lotteries and know each round is

selected with equal chance.

If subjects do not accurately internalize an objective lottery over rounds, then

paying in probability points might be better for eliciting preferences from a pedagog-

ical perspective. This strategy is certainly not infallible, however. The value of a one

percent increase in the probability of winning the prize might depend on the subject’s

current probability of winning the prize. I think this is of particular concern in two

15Because the subjects participated on-line, they were transfered the money electronically within
24 hours of their session ending.
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cases, when the subject’s probability of winning the prize is moving away from 0%,

and when it is moving to 100%. I think a probability point should have essentially

the same value in two different rounds if neither of these two cases are occurring.

This means that if I can move a subjects chance of winning away from 0% and 100%

I could reduce certainty effects, while certainty effects would be persistent with RIS.

The first 8 rounds of investment decisions familiarize subjects with the exper-

iment interface and allow me to move a subject’s chance of winning away from 0%

and 100%. In the first 8 rounds subjects could not ‘get more information’ and they

had to make a decision based on the payoff from the safe option X and the big dot. If

the subject chooses the safe option in any of the first 8 rounds then they know they

cannot achieve a 100 percent chance of winning the prize, and certainty effects are

mitigated at least partially. If the subject chooses X in any of the first 8 rounds their

probability of winning the prize is strictly above zero, and I do not need to worry

about them making a decision later purely because it means they guarantee a chance

of winning the prize. Further, the first 8 rounds test the understanding of the DMs

and if they are reducing compound lotteries in the rounds.

In the first 8 rounds each subject saw the same sequence of big dots (which form

beliefs) and payoffs for the safe option X (prices). The big dots were green, green,

red, red, red, red, red, and red, and the payoffs for option X were 0.8, 0.7, 0.2, 0.5,

0.4, 0.3, 0.24, and 0.26.

In each decision problem subjects had the option to stop doing decision prob-

lems. They were told that if they decided to ‘exit’ they would maintain their current

probability of winning the prize, and immediately find out if they had won or not,

forfeiting the chance to further increase their chance of winning. If a DM fatigues,

and they no longer think it is worth their time to select the better option, but they

cannot stop without loosing any probability of winning they had accrued, then they

might rush through the experiment, selecting options not because they are indicative

of the DM’s preferences, but because the DM is trying to finish as fast as they can.
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So, if a subject prefers to stop doing decision problems, I let them, so my data would

be less noisy and more indicative of preferences.

I had 21 subjects decide not to finish the experiment, which left me with a

sample of 243 subjects. Less than ten percent of students dropping out is not overly

concerning since they were participating over the internet and could have had any

number of distractions arise.

It was hoped that red and green would have intuitive value to the subjects. The

downside with red and green is that about one in twenty people have red/green color

blindness. To combat this issue, each dot displayed has a black letter in its middle,

either R of G, so that subjects can still differentiate between red and green dots even

if they are color blind. See Figure 2 for an example. I did not receive any complaints

about the dots being hard to differentiate.

Before any subjects participated in the experiment ten different “treatments”

of image files were generated (100 × 10 = 1000 rounds of images, each consisting of

a big dot image and an image of 100 small dots). This means that 1000 times a big

dot color was drawn. The chance of the big dot being green was 1
4
and the chance of

the big dot being red was 3
4
. After the big dot color for the round was determined

the composition of the small dots was drawn. In each instance there was a 3
4
chance

that 51 of the small dots would match the color of the big dot and a 1
4
that 51 of

the small dots would not match the color of the big dot. Either way, the order of the

small dots was randomly generated given the drawn proportion. After this process

was completed, the first eight rounds of images were used for all ten treatments, but

other than that the images were not altered. This means, for instance, that if a

subject was assigned to image “treatment” nine, their first eight rounds of images

were the first eight rounds of images generated, and their last 92 rounds of images

were the 809th through 900th rounds of images generated.
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Figure 3: Implications of Theorem 1 (p1 < p2)

Pr(Y|ω, p)

Pr(Y|ω, p)

0
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1 s(p1)s(p2)

Figure 3 depicts S and the implications of Theorem 1 (Walker-Jones, 2024). The red line is the
information outcomes that result in the same probability of selecting option Y given either realization
of the state (these are the information outcomes Assumption 1 (Walker-Jones, 2024) requires to have
a cost of zero). In Theorem 1 (Walker-Jones, 2024), part (i) requires that each s(p) be on or above
the red line. The blue line, defined by sµ(ω) + sµ(ω) = s(p1)µ(ω) + s(p1)µ(ω), is the collection of
points that create the same unconditional probability of selecting option Y. Part (ii) requires that
s(p2) be on or below the blue line. Part (iii) requires that s(p) not be in the interior of S and on
the red line unless for all other p̃ ∈ P either s(p̃) = (0, 0) or s(p̃) = (1, 1).

Figure 4: Implications of Theorem 2 (PS model, p1 < p2)
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Figure 4 depicts S and the implications of Theorem 2 (Walker-Jones, 2024). The blue lines are the
lines through s(p1) from (0, 0) and (1, 1). When the DM is learning and price increases, Pr(Y|ω, p)
and Pr(Y|ω, p) must both weakly decrease, but the proportional reduction in Pr(Y|ω, p) must be
weakly larger than the proportional reduction in Pr(Y|ω, p), so s(p, µ) must remain weakly above the
blue line from (0, 0) through s(p). Further, Pr(X|ω, p) and Pr(X|ω, p) must both weakly increase,
but the proportional increase in Pr(X|ω, p) must be weakly smaller than the proportional increase
in Pr(X|ω, p), so s(p, µ) must remain weakly below the blue line from (1, 1) through s(p) (assuming
I am not starting from s(p, µ) = (1, 1)).
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Figure 5: Implications of Theorem 3 (aggregate PS model, p1 < p2)
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Figure 5 depicts S and the implications of Theorem 3 (Walker-Jones, 2024), which requires that
Pr(Y|ω, p) and Pr(Y|ω, p) are weakly decreasing in p. In Figure 5, this means that s(p2) is below
and to the left of the old information outcome s(p1), weakly between the two blue lines but above
the red line.

Figure 6: Aggregate Behavior (p1 = 0.25 < p2 = 0.5)
µ(ω) = 1
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Figure 6 shows the aggregated behavior of subjects in the experiment from Walker-Jones (2024) with
rounds with µ(ω) = 1

4 on the left side and rounds with µ(ω) = 3
4 on the right side. The changes in

aggregate observed behavior are completely in line with the predictions of the PS model (Theorem
2 (Walker-Jones, 2024)). When µ(ω) = 1

4 : Pr(Y|ω, p = 0.25) = 0.182, Pr(Y|ω, p = 0.5) = 0.098,
Pr(Y|ω, p = 0.25) = 0.513 , and Pr(Y|ω, p = 0.5) = 0.391. When µ(ω) = 3

4 : Pr(Y|ω, p = 0.25) =
0.645, Pr(Y|ω, p = 0.5) = 0.511, Pr(Y|ω, p = 0.25) = 0.943, and Pr(Y|ω, p = 0.5) = 0.893.
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Figure 7:

Training (1 of 3):
The experiment consists of 100 rounds of investment decisions, which does not include the training round (Round 0). Each of the 100
rounds provides you with the opportunity to increase your probability of winning a prize of $25 at the end of the experiment. This prize
is in addition to whatever you earn during the training process. 

You will not be able to increase your probability of winning the prize by more than 1 percentage point in any one round. Ideally, you
would thus like to increase your probability of winning the prize by 1 percentage point in each round, so that you win the prize with a
100% probability when the experiment is over, but it is extremely unlikely that this will be possible. 

In each investment decision you get to choose between two investment options, option X and option Y. 
Option X always increases your probability of winning the prize by a displayed positive amount, which is always less than 1 percentage
point. 
Option Y, in contrast, either does not increase your probability of winning the prize at all, or it increases your probability of winning the
prize by 1 percentage point. 

To help provide you with some information about the chance that option Y increases your probability of winning the prize, in each
round there is one large dot that is either red with a black R in the middle of it (example below on right), or green with a black G in the
middle of it (example below on left). 

 

When the large dot is red, this is a bad sign for the value of option Y, and there is only a 1 out of 4 chance (25% chance) that option Y
increases your probability of winning the prize by 1 percentage point, and a 3 out of 4 chance (75% chance) that option Y leaves your
probability of winning the prize unchanged. This means that when the large dot is red, on average option Y increases your probability of
winning the prize by 0.25 percentage points. 

When the large dot is green, this is a good sign for the value of option Y, and there is a 3 out of 4 chance (75% chance) that option Y
increases your probability of winning the prize by 1 percentage point, and only a 1 out of 4 chance (25% chance) that option Y leaves
your probability of winning the prize unchanged. This means that when the large dot is green, on average option Y increases your
probability of winning the prize by 0.75 percentage points. 

In each round there is a 3 out of 4 chance (75% chance) the big dot is red, and a 1 out of 4 chance (25% chance) the big dot is green. In
the first 8 rounds (rounds 1 through 8) the large dot is the only source of information available to you. 

Next
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Figure 8:
Training (2 of 3):
In the last 92 rounds (rounds 9 through 100), you can get more information if you choose to. When you choose to 'Get more
information,' you are shown 100 small dots, each of which is red with a black R in the middle, or green with a black G in the middle.
Together, the small dots tell you for sure whether or not option Y increases your probability of winning the $25 prize by 1 percentage
point in the round you are in. 

In each round that you can 'Get more information,' there are either 49 small red dots and 51 small green dots, or 51 small red dots and
49 small green dots. 
If there are 49 small red dots and 51 small green dots, then option Y increases your probability of winning the prize by 1 percentage
point. 
If there are 51 small red dots and 49 small green dots, then option Y does not increase your probability of winning the prize. 

Under the dotted line below is an example of a round where you can choose to get more information. Notice that the round number is
displayed, and the amount that option X increases your probability of winning the prize is displayed. 

The large dot is green, so you know there is a 3 out of 4 chance (75% chance) option Y increases your probability of winning the prize by
1 percentage point, but you cannot know for sure unless you choose to 'Get more information.' 

Please select 'Get more information' so you see what happens when you do. 

Round number: 0 of 100 
Option X increases your probability of winning the $25 prize by 0.5 percentage points 

Please choose an option:

---------

 

Remember: 

If the large dot is red, then there is a 3 out of 4 chance (75% chance) option Y increase your probability of winning the prize by 0
percentage points, and a 1 out of 4 chance (25% chance) it increases your probability of winning the prize by 1 percentage point. This
means that when the large dot is red, on average option Y increases your probability of winning the prize by 0.25 percentage points. 

If the large dot is green, then there is a 3 out of 4 chance (75% chance) option Y increases your probability of winning the prize by 1
percentage point, and a 1 out of 4 chance (25% chance) it increases your probability of winning the prize by 0 percentage points. This
means that when the large dot is green, on average option Y increases your probability of winning the prize by 0.75 percentage points. 

If you choose to 'Get more information,' 100 small dots will appear that you can use to determine how much option Y increases your
probability of winning the prize. 

Next
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Figure 9:

Training (3 of 3):
Under the dotted line below is an example of what you would see after requesting to 'Get more information' in a round. Selecting this
option has made the 100 small dots for this round appear.  

Try counting the number of small red dots and or the number of small green dots below. You should find there are 49 red dots and 51
green dots, which means option Y would increase your probability of winning the prize by 1 percentage point. So in this round, option Y
increases your probability of winning the prize by more than option X. This training round (Round number 0) does not count towards
your eventual probability of winning the prize.  

After you have finished the quiz, if you want to quit the experiment you will be given the option to do so at the bottom of the screen in
each round. When you choose to exit, you still have the chance to win the $25 prize, you do not lose any probability you have acquired
of winning the prize, but you do lose the chance to further increase your probability of winning the prize. 

Round number: 0 of 100 
Option X increases your probability of winning the $25 prize by 0.5 percentage points 

Please choose an option:

---------

 

Remember: 
In each round, option Y always increases your probability of winning the prize by either 0 or 1 percentage points. 
In each round, there are always either 49 small red dots and 51 small green dots, or 51 small red dots and 49 small green dots. 
If there are 49 small red dots and 51 small green dots, then option Y increases your probability of winning the prize by 1 percentage
point. 
If there are 51 small red dots and 49 small green dots, then option Y increases your probability of winning the prize by 0 percentage
points. 

Next
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